The anisotropic criterion of von Mises (1928) as a yield condition for PMMCs. A calibration procedure based on numerical cell-analysis

The anisotropic criterion of von Mises (1928) as a yield condition for PMMCs. A calibration... The first yield criterion for anisotropic materials was proposed by von Mises (1928). Compared with other classic anisotropic criteria, it is seldom mentioned in practical applications in literature. Here, the suitability of the anisotropic criterion of von Mises to characterize initial yielding of Particulate Metal Matrix Composites (PMMCs) is studied with a computational micromechanics approach. First, a calibration procedure is described for experimental quantification of the yield parameters. Then, an actual calibration is performed by means of numerical experimentation using FEM analysis of multi-particle cells.The cells used in the numerical experiments consist of a representative volume element (RVE) of the material, including a number of reinforcing particles, randomly distributed inside the RVE. Particles’ aspect ratio and orientation are controlled in such a way that the microstructure of the model material shows an explicit geometric anisotropy. The developed scheme allowed to qualitatively describe the relation between the anisotropy of the microstructure and the anisotropy of the mechanical behavior. Results show that the anisotropic criterion of von Mises is a good candidate to characterize initial yield of particulate composites. However, some further work needs to be done in order to extend its applicability to a wider range of mechanical loading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

The anisotropic criterion of von Mises (1928) as a yield condition for PMMCs. A calibration procedure based on numerical cell-analysis

Loading next page...
 
/lp/elsevier/the-anisotropic-criterion-of-von-mises-1928-as-a-yield-condition-for-x00W0KN0JW
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.091
Publisher site
See Article on Publisher Site

Abstract

The first yield criterion for anisotropic materials was proposed by von Mises (1928). Compared with other classic anisotropic criteria, it is seldom mentioned in practical applications in literature. Here, the suitability of the anisotropic criterion of von Mises to characterize initial yielding of Particulate Metal Matrix Composites (PMMCs) is studied with a computational micromechanics approach. First, a calibration procedure is described for experimental quantification of the yield parameters. Then, an actual calibration is performed by means of numerical experimentation using FEM analysis of multi-particle cells.The cells used in the numerical experiments consist of a representative volume element (RVE) of the material, including a number of reinforcing particles, randomly distributed inside the RVE. Particles’ aspect ratio and orientation are controlled in such a way that the microstructure of the model material shows an explicit geometric anisotropy. The developed scheme allowed to qualitatively describe the relation between the anisotropy of the microstructure and the anisotropy of the mechanical behavior. Results show that the anisotropic criterion of von Mises is a good candidate to characterize initial yield of particulate composites. However, some further work needs to be done in order to extend its applicability to a wider range of mechanical loading.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial