Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors

Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated... Heavy metal pollution in farmlands is highly concerned as crops’ easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants’ uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors

Loading next page...
 
/lp/elsevier/temporal-variations-and-spatial-distributions-of-heavy-metals-in-a-i4Z2p2Xmnx
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.02.026
Publisher site
See Article on Publisher Site

Abstract

Heavy metal pollution in farmlands is highly concerned as crops’ easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants’ uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off