Telomere dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal markers of senescence

Telomere dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal... Telomere length and the rate of telomere shortening have been suggested as particularly useful physiological biomarkers of the processes involved in senescent decline of somatic and reproductive function. However, longitudinal data on changes in telomere length across the lifespan are difficult to obtain, particularly for long-lived animals. Quasi-longitudinal studies have been proposed as a method to gain insight into telomere dynamics in long-lived species. In this method, minimally replicative cells are used as the baseline telomere length against which telomere length in highly replicative cells (which represent the current state) can be compared. Here we test the assumptions and predictions of the quasi-longitudinal approach using longitudinal telomere data in a wild cooperative mammal, the banded mongoose, Mungos mungo. Contrary to our prediction, telomere length (TL) was longer in leukocytes than in ear cartilage. Longitudinally, the TL of ear cartilage shortened with age, but there was no change in the TL of leukocytes, and we also observed many individuals in which TL increased rather than decreased with age. Leukocyte TL but not cartilage TL was a predictor of total lifespan, while neither predicted post-sampling survival. Our data do not support the hypothesis that cross-tissue comparison in TL can act as a quasi-longitudinal marker of senescence. Rather, our results suggest that telomere dynamics in banded mongooses are more complex than is typically assumed, and that longitudinal studies across whole life spans are required to elucidate the link between telomere dynamics and senescence in natural populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Gerontology Elsevier

Telomere dynamics in wild banded mongooses: Evaluating longitudinal and quasi-longitudinal markers of senescence

Loading next page...
 
/lp/elsevier/telomere-dynamics-in-wild-banded-mongooses-evaluating-longitudinal-and-m0TjeHPghq
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0531-5565
eISSN
1873-6815
D.O.I.
10.1016/j.exger.2017.09.021
Publisher site
See Article on Publisher Site

Abstract

Telomere length and the rate of telomere shortening have been suggested as particularly useful physiological biomarkers of the processes involved in senescent decline of somatic and reproductive function. However, longitudinal data on changes in telomere length across the lifespan are difficult to obtain, particularly for long-lived animals. Quasi-longitudinal studies have been proposed as a method to gain insight into telomere dynamics in long-lived species. In this method, minimally replicative cells are used as the baseline telomere length against which telomere length in highly replicative cells (which represent the current state) can be compared. Here we test the assumptions and predictions of the quasi-longitudinal approach using longitudinal telomere data in a wild cooperative mammal, the banded mongoose, Mungos mungo. Contrary to our prediction, telomere length (TL) was longer in leukocytes than in ear cartilage. Longitudinally, the TL of ear cartilage shortened with age, but there was no change in the TL of leukocytes, and we also observed many individuals in which TL increased rather than decreased with age. Leukocyte TL but not cartilage TL was a predictor of total lifespan, while neither predicted post-sampling survival. Our data do not support the hypothesis that cross-tissue comparison in TL can act as a quasi-longitudinal marker of senescence. Rather, our results suggest that telomere dynamics in banded mongooses are more complex than is typically assumed, and that longitudinal studies across whole life spans are required to elucidate the link between telomere dynamics and senescence in natural populations.

Journal

Experimental GerontologyElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off