Systemic blockade of LPA1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior

Systemic blockade of LPA1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of... The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Loading next page...
 
/lp/elsevier/systemic-blockade-of-lpa1-3-lysophosphatidic-acid-receptors-by-ki16425-ynKYwztU3a
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2018.01.033
Publisher site
See Article on Publisher Site

Abstract

The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.

Journal

NeuropharmacologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off