Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples

Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid... Matrix effects (ME) is acknowledged as being one of the major drawbacks of quantitative bioanalytical methods, involving the use of liquid chromatography coupled to mass spectrometry (LC-MS). In the present study, the incidence of ME in SFC-MS/MS and LC-MS/MS in the positive mode electrospray ionization (ESI+) was systematically compared for the analysis of urine and plasma samples using two representative sets of 40 doping agents and 38 pharmaceutical compounds, respectively. Three different SFC stationary phase chemistries were employed, to highlight the importance of the column in terms of selectivity. Biological samples were prepared using two different sample treatments, including a non-selective sample clean-up procedure (dilute and shoot (DS) and protein precipitation (PP) for urine and plasma samples, respectively) and a selective sample preparation, namely solid phase extraction (SPE) for both matrices.The lower susceptibility to ME in SFC vs. reversed phase LC (RPLC) was verified in all the experiments performed on urine, and especially when a simple DS procedure was applied. Also, with the latter, the performance strongly varied according to the selected SFC stationary phase, whereas the results were quite similar with the three SFC columns, in the case of SPE clean-up. The same trend was observed with plasma samples. Indeed, with the PP procedure, the occurrence of ME was different on the three SFC columns, and only the 2-picolylamine stationary phase chemistry displayed lower incidence of ME compared to LC-MS/MS. On the contrary, when a SPE clean-up was carried out, the results were similar to the urine samples, with higher performance of SFC vs. LC and limited discrepancies between the three SFC columns. The type of ME observed in LC-MS/MS was generally a signal enhancement and an ion suppression for urine and plasma samples, respectively. In the case of SFC-MS/MS, the type of ME randomly varied according to the analyzed matrix, selected column and sample treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Chromatography B Elsevier

Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples

Loading next page...
 
/lp/elsevier/systematic-evaluation-of-matrix-effects-in-supercritical-fluid-c8YXuXMp20
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1570-0232
eISSN
1873-376X
D.O.I.
10.1016/j.jchromb.2018.01.037
Publisher site
See Article on Publisher Site

Abstract

Matrix effects (ME) is acknowledged as being one of the major drawbacks of quantitative bioanalytical methods, involving the use of liquid chromatography coupled to mass spectrometry (LC-MS). In the present study, the incidence of ME in SFC-MS/MS and LC-MS/MS in the positive mode electrospray ionization (ESI+) was systematically compared for the analysis of urine and plasma samples using two representative sets of 40 doping agents and 38 pharmaceutical compounds, respectively. Three different SFC stationary phase chemistries were employed, to highlight the importance of the column in terms of selectivity. Biological samples were prepared using two different sample treatments, including a non-selective sample clean-up procedure (dilute and shoot (DS) and protein precipitation (PP) for urine and plasma samples, respectively) and a selective sample preparation, namely solid phase extraction (SPE) for both matrices.The lower susceptibility to ME in SFC vs. reversed phase LC (RPLC) was verified in all the experiments performed on urine, and especially when a simple DS procedure was applied. Also, with the latter, the performance strongly varied according to the selected SFC stationary phase, whereas the results were quite similar with the three SFC columns, in the case of SPE clean-up. The same trend was observed with plasma samples. Indeed, with the PP procedure, the occurrence of ME was different on the three SFC columns, and only the 2-picolylamine stationary phase chemistry displayed lower incidence of ME compared to LC-MS/MS. On the contrary, when a SPE clean-up was carried out, the results were similar to the urine samples, with higher performance of SFC vs. LC and limited discrepancies between the three SFC columns. The type of ME observed in LC-MS/MS was generally a signal enhancement and an ion suppression for urine and plasma samples, respectively. In the case of SFC-MS/MS, the type of ME randomly varied according to the analyzed matrix, selected column and sample treatment.

Journal

Journal of Chromatography BElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off