System identification using kernel-based regularization: New insights on stability and consistency issues

System identification using kernel-based regularization: New insights on stability and... Learning from examples is one of the key problems in science and engineering. It deals with function reconstruction from a finite set of direct and noisy samples. Regularization in reproducing kernel Hilbert spaces (RKHSs) is widely used to solve this task and includes powerful estimators such as regularization networks. Recent achievements include the proof of the statistical consistency of these kernel-based approaches. Parallel to this, many different system identification techniques have been developed but the interaction with machine learning does not appear so strong yet. One reason is that the RKHSs usually employed in machine learning do not embed the information available on dynamic systems, e.g. BIBO stability. In addition, in system identification the independent data assumptions routinely adopted in machine learning are never satisfied in practice. This paper provides some new results which strengthen the connection between system identification and machine learning. Our starting point is the introduction of RKHSs of dynamic systems. They contain functionals over spaces defined by system inputs and allow to interpret system identification as learning from examples. In both linear and nonlinear settings, it is shown that this perspective permits to derive in a relatively simple way conditions on RKHS stability (i.e. the property of containing only BIBO stable systems or predictors), also facilitating the design of new kernels for system identification. Furthermore, we prove the convergence of the regularized estimator to the optimal predictor under conditions typical of dynamic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

System identification using kernel-based regularization: New insights on stability and consistency issues

Loading next page...
 
/lp/elsevier/system-identification-using-kernel-based-regularization-new-insights-i0G8ioVCMx
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.065
Publisher site
See Article on Publisher Site

Abstract

Learning from examples is one of the key problems in science and engineering. It deals with function reconstruction from a finite set of direct and noisy samples. Regularization in reproducing kernel Hilbert spaces (RKHSs) is widely used to solve this task and includes powerful estimators such as regularization networks. Recent achievements include the proof of the statistical consistency of these kernel-based approaches. Parallel to this, many different system identification techniques have been developed but the interaction with machine learning does not appear so strong yet. One reason is that the RKHSs usually employed in machine learning do not embed the information available on dynamic systems, e.g. BIBO stability. In addition, in system identification the independent data assumptions routinely adopted in machine learning are never satisfied in practice. This paper provides some new results which strengthen the connection between system identification and machine learning. Our starting point is the introduction of RKHSs of dynamic systems. They contain functionals over spaces defined by system inputs and allow to interpret system identification as learning from examples. In both linear and nonlinear settings, it is shown that this perspective permits to derive in a relatively simple way conditions on RKHS stability (i.e. the property of containing only BIBO stable systems or predictors), also facilitating the design of new kernels for system identification. Furthermore, we prove the convergence of the regularized estimator to the optimal predictor under conditions typical of dynamic systems.

Journal

AutomaticaElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off