System dynamic modelling of industrial growth and landscape ecology in China

System dynamic modelling of industrial growth and landscape ecology in China With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005–2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015–2020. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

System dynamic modelling of industrial growth and landscape ecology in China

Loading next page...
 
/lp/elsevier/system-dynamic-modelling-of-industrial-growth-and-landscape-ecology-in-50tmQW2IjI
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.06.026
Publisher site
See Article on Publisher Site

Abstract

With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005–2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015–2020.

Journal

Journal of Environmental ManagementElsevier

Published: Sep 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off