Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state... One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of −0.15 V vs. Ag/AgCl and a limiting diffusion current density of −4.38 mA cm−2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

Loading next page...
 
/lp/elsevier/synthesis-of-silver-nitrogen-doped-reduced-graphene-oxide-through-a-oZJ00iso3p
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.106
Publisher site
See Article on Publisher Site

Abstract

One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of −0.15 V vs. Ag/AgCl and a limiting diffusion current density of −4.38 mA cm−2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off