Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide

Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide This paper reports a new approach of producing CaCO3 particles in alkali solution. CaCO3 particles with pure calcite structure were obtained from the reaction of water-dispersed graphene oxide (GO) or reduced graphene oxide (rGO) with either Ca(OH)2 or CaO. In Fourier Transform Infrared (FTIR) spectra, the pure calcite structure was demonstrated by fundamental bands at 1425 (ν3), 873 (ν2), and 712 cm−1 (ν4). The Raman spectra showed the characteristic peak of calcite structure at 1085 cm−1 (ν1). X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that only the pure calcite phase of CaCO3 was formed in both synthesis approaches. Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDX), and High-resolution transmission electron microscopy (HRTEM) also confirmed that distorted cubic and rhombic calcite particles were obtained with GO, while the pine flower-like and flower-like particles were obtained with rGO, and the average crystallite sizes varied from 26 to 44 nm. The mechanism of the reaction was investigated and it was found that the decomposition of oxygen functional groups on the surface of GO or rGO in certain alkaline media to release CO, CO2, and water was a key process as the released CO2 further reacted with OH- and Ca2+ to form CaCO3. This demonstrated that both GO and rGO could be used as main reactants for the synthesis of calcite. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide

Loading next page...
 
/lp/elsevier/synthesis-of-calcium-carbonate-in-alkali-solution-based-on-graphene-GxwQ090SId
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.03.005
Publisher site
See Article on Publisher Site

Abstract

This paper reports a new approach of producing CaCO3 particles in alkali solution. CaCO3 particles with pure calcite structure were obtained from the reaction of water-dispersed graphene oxide (GO) or reduced graphene oxide (rGO) with either Ca(OH)2 or CaO. In Fourier Transform Infrared (FTIR) spectra, the pure calcite structure was demonstrated by fundamental bands at 1425 (ν3), 873 (ν2), and 712 cm−1 (ν4). The Raman spectra showed the characteristic peak of calcite structure at 1085 cm−1 (ν1). X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that only the pure calcite phase of CaCO3 was formed in both synthesis approaches. Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDX), and High-resolution transmission electron microscopy (HRTEM) also confirmed that distorted cubic and rhombic calcite particles were obtained with GO, while the pine flower-like and flower-like particles were obtained with rGO, and the average crystallite sizes varied from 26 to 44 nm. The mechanism of the reaction was investigated and it was found that the decomposition of oxygen functional groups on the surface of GO or rGO in certain alkaline media to release CO, CO2, and water was a key process as the released CO2 further reacted with OH- and Ca2+ to form CaCO3. This demonstrated that both GO and rGO could be used as main reactants for the synthesis of calcite.

Journal

Journal of Solid State ChemistryElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off