Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium (III) polypyridyl complex

Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an... An iridium (III) complex [Ir(ppy)2(BDPIP)]PF6 (Ir-1) was reported to show high anticancer activity and may be used as a potent anticancer drug. In the current study, we designed and synthesized a novel iridium (III) complex and evaluated its potential inhibitory effect on the cancer cell growth in vitro and in vivo. This complex was found to display high cytotoxic activity in vitro and in vivo against A549 cell with a low IC50 value of 3.6 ± 0.3 μM and inhibiting percentage of tumor growth is 63.84% compared with the control. The complex also exhibited potencies superior to that of cisplatin toward A549 cell in vitro and in vivo. Further studies revealed that the complex can induce apoptosis and autophagy, enhance the ROS level, cause a decrease in the mitochondrial membrane potential and inhibit the cell invasion. Our findings indicated that the complex induced apoptosis in A549 through mitochondria dysfunction and PI3K/AKT/mTOR signaling pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Synthesis, characterization and anticancer activity in vitro and in vivo evaluation of an iridium (III) polypyridyl complex

Loading next page...
 
/lp/elsevier/synthesis-characterization-and-anticancer-activity-in-vitro-and-in-SBa1l1PYvk
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.11.091
Publisher site
See Article on Publisher Site

Abstract

An iridium (III) complex [Ir(ppy)2(BDPIP)]PF6 (Ir-1) was reported to show high anticancer activity and may be used as a potent anticancer drug. In the current study, we designed and synthesized a novel iridium (III) complex and evaluated its potential inhibitory effect on the cancer cell growth in vitro and in vivo. This complex was found to display high cytotoxic activity in vitro and in vivo against A549 cell with a low IC50 value of 3.6 ± 0.3 μM and inhibiting percentage of tumor growth is 63.84% compared with the control. The complex also exhibited potencies superior to that of cisplatin toward A549 cell in vitro and in vivo. Further studies revealed that the complex can induce apoptosis and autophagy, enhance the ROS level, cause a decrease in the mitochondrial membrane potential and inhibit the cell invasion. Our findings indicated that the complex induced apoptosis in A549 through mitochondria dysfunction and PI3K/AKT/mTOR signaling pathways.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Feb 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off