Synthesis, biological evaluation and structure-activity relationship studies of hederacolchiside E and its derivatives as potential anti-Alzheimer agents

Synthesis, biological evaluation and structure-activity relationship studies of hederacolchiside... Inspired by the previously reported neuroprotective activity of hederacolchiside E (1), we synthesized hederacolchiside E for the first time along with eleven of its derivatives. The neuroprotective effects of these compounds were further evaluated against H2O2- and Aβ1-42-induced injury using cell-based assays. The derivatives showed obvious differences in activity due to structural variations, and two of them exhibited better neuroprotective effects than 1 in the Aβ1-42-induced injury model. Compound 7 was the most active derivative and had a relatively simple chemical structure. Moreover, 1 and 7 can significantly reduce the release of lactate dehydrogenase (LDH), level of intracellular reactive oxygen species (ROS) and extent of malondialdehyde (MDA) increase resulting from Aβ1-42 treatment, which demonstrated that these kinds of compounds show neuroprotective effects in Alzheimer's disease (AD) models via modulating oxidative stress. Compound 7 could be used as promising lead for the development of a new type of neuroprotective agent against AD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Synthesis, biological evaluation and structure-activity relationship studies of hederacolchiside E and its derivatives as potential anti-Alzheimer agents

Loading next page...
 
/lp/elsevier/synthesis-biological-evaluation-and-structure-activity-relationship-0ihzQXH9qk
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.11.040
Publisher site
See Article on Publisher Site

Abstract

Inspired by the previously reported neuroprotective activity of hederacolchiside E (1), we synthesized hederacolchiside E for the first time along with eleven of its derivatives. The neuroprotective effects of these compounds were further evaluated against H2O2- and Aβ1-42-induced injury using cell-based assays. The derivatives showed obvious differences in activity due to structural variations, and two of them exhibited better neuroprotective effects than 1 in the Aβ1-42-induced injury model. Compound 7 was the most active derivative and had a relatively simple chemical structure. Moreover, 1 and 7 can significantly reduce the release of lactate dehydrogenase (LDH), level of intracellular reactive oxygen species (ROS) and extent of malondialdehyde (MDA) increase resulting from Aβ1-42 treatment, which demonstrated that these kinds of compounds show neuroprotective effects in Alzheimer's disease (AD) models via modulating oxidative stress. Compound 7 could be used as promising lead for the development of a new type of neuroprotective agent against AD.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off