Syntheses and characterization of amphiphilic quaternary ammonium chitosan derivatives

Syntheses and characterization of amphiphilic quaternary ammonium chitosan derivatives Amphiphilic chitosan derivatives possess improved physico-chemical properties and could be used as carriers in drug delivery systems. The aim of this study was to investigate the behaviour of an amphiphilic system involving (5-pentyl) trimethylammonium and dodecyl aldehyde-modified chitosan. Amphiphilic chitosan derivatives were synthesized and characterized by 1HNMR and ATR-FTIR spectroscopy. Self-assembled aggregates formed in aqueous solution have hydrophobic cores that were characterized by fluorescence spectroscopy using pyrene as probe and dynamic light scattering (DLS). The critical aggregation concentration of the aggregates in water varied from 0.004 to 0.037g/L and the average size distribution was in the 230–500nm range. The ζ-potential (+15.5 to +44.8mV) confirmed that the surfaces of the aggregates were positively charged and stable in physiological-like environments. TEM images suggest that the aggregates have a spherical shape, showing good agreement with DLS results. These results suggest that the synthesized copolymers have the capability of being used as carriers for hydrophobic drugs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carbohydrate Polymers Elsevier

Syntheses and characterization of amphiphilic quaternary ammonium chitosan derivatives

Loading next page...
 
/lp/elsevier/syntheses-and-characterization-of-amphiphilic-quaternary-ammonium-CwzSUhrEhW
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0144-8617
D.O.I.
10.1016/j.carbpol.2016.03.083
Publisher site
See Article on Publisher Site

Abstract

Amphiphilic chitosan derivatives possess improved physico-chemical properties and could be used as carriers in drug delivery systems. The aim of this study was to investigate the behaviour of an amphiphilic system involving (5-pentyl) trimethylammonium and dodecyl aldehyde-modified chitosan. Amphiphilic chitosan derivatives were synthesized and characterized by 1HNMR and ATR-FTIR spectroscopy. Self-assembled aggregates formed in aqueous solution have hydrophobic cores that were characterized by fluorescence spectroscopy using pyrene as probe and dynamic light scattering (DLS). The critical aggregation concentration of the aggregates in water varied from 0.004 to 0.037g/L and the average size distribution was in the 230–500nm range. The ζ-potential (+15.5 to +44.8mV) confirmed that the surfaces of the aggregates were positively charged and stable in physiological-like environments. TEM images suggest that the aggregates have a spherical shape, showing good agreement with DLS results. These results suggest that the synthesized copolymers have the capability of being used as carriers for hydrophobic drugs.

Journal

Carbohydrate PolymersElsevier

Published: Aug 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off