Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism

Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage... Nowadays, clean-up of waters with coexisting heavy metal ions and organic pollutants is of great environmental importance. In this study, a novel sewage sludge-derived char-based catalyst was firstly synthesized, and coupled with hydrogen peroxide for the simultaneous removal of copper (II) and norfloxacin in aqueous solutions. The most relevant findings revealed that zero-valent iron and zero-valent aluminum particles were successfully formed on the catalyst surface when the leaching of the sludge-derived char was reduced by the green tea extract. Nearly 100% of both copper (II) and norfloxacin were simultaneously removed due to a synergistic effect between the reduction of copper (II) and the oxidation of norfloxacin over the catalyst. The gradual addition mode of hydrogen peroxide exhibited a better performance on the simultaneous removal of copper (II) and norfloxacin. The coexisting anions like nitrate and phosphate had significant negative effects on the copper (II) removal, whereas carbonate, fluoride and phosphate had significant negative effects on the norfloxacin removal. Different copper species like zero-valent copper, copper oxide and copper hydroxide were identified in copper (II) reduction process, whereas a total of eight oxidative products were identified in norfloxacin oxidation process. A possible reaction mechanism for the simultaneous removal of copper (II) and norfloxacin by the sewage sludge-derived char-based catalyst/hydrogen peroxide system was proposed. The adsorption of both copper (II) and norfloxacin over the catalyst were firstly occurred, and then the reduction of copper (II) over both zero-valent iron and zero-valent aluminum particles on the catalyst surface as well as the Fenton oxidation of norfloxacin were followed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism

Loading next page...
 
/lp/elsevier/synergistic-reduction-of-copper-ii-and-oxidation-of-norfloxacin-over-a-W2xcmy54lD
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.045
Publisher site
See Article on Publisher Site

Abstract

Nowadays, clean-up of waters with coexisting heavy metal ions and organic pollutants is of great environmental importance. In this study, a novel sewage sludge-derived char-based catalyst was firstly synthesized, and coupled with hydrogen peroxide for the simultaneous removal of copper (II) and norfloxacin in aqueous solutions. The most relevant findings revealed that zero-valent iron and zero-valent aluminum particles were successfully formed on the catalyst surface when the leaching of the sludge-derived char was reduced by the green tea extract. Nearly 100% of both copper (II) and norfloxacin were simultaneously removed due to a synergistic effect between the reduction of copper (II) and the oxidation of norfloxacin over the catalyst. The gradual addition mode of hydrogen peroxide exhibited a better performance on the simultaneous removal of copper (II) and norfloxacin. The coexisting anions like nitrate and phosphate had significant negative effects on the copper (II) removal, whereas carbonate, fluoride and phosphate had significant negative effects on the norfloxacin removal. Different copper species like zero-valent copper, copper oxide and copper hydroxide were identified in copper (II) reduction process, whereas a total of eight oxidative products were identified in norfloxacin oxidation process. A possible reaction mechanism for the simultaneous removal of copper (II) and norfloxacin by the sewage sludge-derived char-based catalyst/hydrogen peroxide system was proposed. The adsorption of both copper (II) and norfloxacin over the catalyst were firstly occurred, and then the reduction of copper (II) over both zero-valent iron and zero-valent aluminum particles on the catalyst surface as well as the Fenton oxidation of norfloxacin were followed.

Journal

Journal of Cleaner ProductionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off