Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance

Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved... Sn/SnO2/C ternary composite with core-shell structures is synthesized using a hydrothermal method and subsequent heat treatment at 973 K. This Sn/SnO2/C composite exhibits the micro-sphere structure that nanosized Sn and SnO2 particles are well encapsulated in the carbon matrix. As anode for sodium-ion batteries, the composite displays superior cycling stability and rate capability to SnO2/C and Sn/C composites. It delivers a high initial discharge capacity of 1110 mAh g−1 with good cyclability. Even at a high current density of 1000 mA g−1, a reversible capacity of 120 mAh g−1 is still remained. The enhanced sodium storage performance of Sn/SnO2/C anode is attributed to the synergistic effect provided by Sn, SnO2 and unique core-shell structure. Since the deformation of Sn can increase the reversible capacity of the SnO2 electrode and the carbon matrix could act as a buffer to accommodate the volume change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance

Loading next page...
 
/lp/elsevier/synergistic-effect-of-the-core-shell-structured-sn-sno2-c-ternary-5QpZpV1bsI
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.123
Publisher site
See Article on Publisher Site

Abstract

Sn/SnO2/C ternary composite with core-shell structures is synthesized using a hydrothermal method and subsequent heat treatment at 973 K. This Sn/SnO2/C composite exhibits the micro-sphere structure that nanosized Sn and SnO2 particles are well encapsulated in the carbon matrix. As anode for sodium-ion batteries, the composite displays superior cycling stability and rate capability to SnO2/C and Sn/C composites. It delivers a high initial discharge capacity of 1110 mAh g−1 with good cyclability. Even at a high current density of 1000 mA g−1, a reversible capacity of 120 mAh g−1 is still remained. The enhanced sodium storage performance of Sn/SnO2/C anode is attributed to the synergistic effect provided by Sn, SnO2 and unique core-shell structure. Since the deformation of Sn can increase the reversible capacity of the SnO2 electrode and the carbon matrix could act as a buffer to accommodate the volume change.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off