Synergies and trade-offs between energy efficiency and resiliency to extreme heat – A case study

Synergies and trade-offs between energy efficiency and resiliency to extreme heat – A case study Recently, due to the increase in the number and severity of heat waves, there is a growing interest in understanding overheating inside buildings and the associated health risks. As a result, a new area of research inquiry is emerging, focusing on investigating the possible trade-offs and synergies between energy efficiency strategies and resiliency to heat in residential buildings. This study addresses this challenge using whole-building simulations to model the passive survivability of archetype residential buildings during power failure scenarios that coincide with extreme heat conditions in Houston, TX and Phoenix, AZ. Results suggest that in older constructions, the indoor thermal conditions will easily reach dangerous levels during such episodes. In both cities, the discomfort index reaches the critical threshold in less than 6 h after the power outage. In addition, while there is a notable overlap between the two objectives, the implication of energy efficiency strategies on building resiliency to heat depends strongly on building characteristics and underlying climate. Notably, in contrast to previous studies that consider colder climates, increasing the insulation and air-tightness are found to be beneficial to passive survivability. Finally, our analysis highlights the importance of the definition of thermal resiliency metrics in interpreting the results of the simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Synergies and trade-offs between energy efficiency and resiliency to extreme heat – A case study

Loading next page...
 
/lp/elsevier/synergies-and-trade-offs-between-energy-efficiency-and-resiliency-to-WrepYOYTYD
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.037
Publisher site
See Article on Publisher Site

Abstract

Recently, due to the increase in the number and severity of heat waves, there is a growing interest in understanding overheating inside buildings and the associated health risks. As a result, a new area of research inquiry is emerging, focusing on investigating the possible trade-offs and synergies between energy efficiency strategies and resiliency to heat in residential buildings. This study addresses this challenge using whole-building simulations to model the passive survivability of archetype residential buildings during power failure scenarios that coincide with extreme heat conditions in Houston, TX and Phoenix, AZ. Results suggest that in older constructions, the indoor thermal conditions will easily reach dangerous levels during such episodes. In both cities, the discomfort index reaches the critical threshold in less than 6 h after the power outage. In addition, while there is a notable overlap between the two objectives, the implication of energy efficiency strategies on building resiliency to heat depends strongly on building characteristics and underlying climate. Notably, in contrast to previous studies that consider colder climates, increasing the insulation and air-tightness are found to be beneficial to passive survivability. Finally, our analysis highlights the importance of the definition of thermal resiliency metrics in interpreting the results of the simulations.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off