Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection

Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers... We describe the sustained delivery of chondroitinase ABC (ChABC) in the hemisected spinal cord using polypropylene carbonate (PPC) electrospun fibers with chitosan (CS) microspheres as a vehicle. PPC and ChABC-loaded CS microspheres were mixed with acetonitrile, and micron fibers were generated by electrospinning. ChABC release was assessed in vitro with high-performance liquid chromatography (HPLC) and revealed stabilized and prolonged release. Moreover, the released ChABC showed sustained activity. PPC-CS micron fibers with or without ChABC were then implanted into a hemisected thoracic spinal cord. In the following 4 weeks, we examined functional recovery and performed immunohistochemical analyses. We found that sustained delivery of ChABC promoted axon sprouting and functional recovery and reduced glial scarring; PPC-CS micron fibers without ChABC did not show these effects. The present findings suggest that PPC-CS micron fibers containing ChABC are a feasible option for spinal cord injury treatment. Furthermore, the system described here may be useful for local delivery of other therapeutic agents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection

Loading next page...
 
/lp/elsevier/sustained-delivery-of-chondroitinase-abc-by-poly-propylene-carbonate-EVqd3Z2hbC
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0006-8993
D.O.I.
10.1016/j.brainres.2015.08.018
Publisher site
See Article on Publisher Site

Abstract

We describe the sustained delivery of chondroitinase ABC (ChABC) in the hemisected spinal cord using polypropylene carbonate (PPC) electrospun fibers with chitosan (CS) microspheres as a vehicle. PPC and ChABC-loaded CS microspheres were mixed with acetonitrile, and micron fibers were generated by electrospinning. ChABC release was assessed in vitro with high-performance liquid chromatography (HPLC) and revealed stabilized and prolonged release. Moreover, the released ChABC showed sustained activity. PPC-CS micron fibers with or without ChABC were then implanted into a hemisected thoracic spinal cord. In the following 4 weeks, we examined functional recovery and performed immunohistochemical analyses. We found that sustained delivery of ChABC promoted axon sprouting and functional recovery and reduced glial scarring; PPC-CS micron fibers without ChABC did not show these effects. The present findings suggest that PPC-CS micron fibers containing ChABC are a feasible option for spinal cord injury treatment. Furthermore, the system described here may be useful for local delivery of other therapeutic agents.

Journal

Brain ResearchElsevier

Published: Oct 22, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off