Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion

Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion The recent shortage of fossil fuel sources and the growing environmental concerns have considerably affected the necessity to search for alternative energy sources. The tremendous increase in energy demands in the transportation and industrial sectors has strengthened efforts to identify sustainable alternative fuel sources. In this regard, biodiesel can be considered a promising substitute for diesel. However, biodiesel is corrosive when it comes in contact with metals. The present study aims at investigating the sustainability of additive-doped biodiesel upon exposure of copper-based materials. A static immersion test was conducted at room temperature (25 °C–27 °C) for 2160 h. The metals used in the experiment were copper, leaded bronze, and phosphorous bronze. The investigated fuel was 100% palm biodiesel without and with additives (500 ppm), including tert-butylamine, benzotriazole, propyl gallate, pyrogallol, and butylated hydroxytoluene. The corrosion rate of the metals was determined at the end of the experiment via weight loss measurement. The metals were further characterized via scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Results showed that the corrosion rate of copper was considerably higher than those of the other metals. X-ray diffraction analysis indicated the presence of copper carbonate and cupric oxide on the copper surface that was exposed to biodiesel. The occurrence of these compounds could be attributed to the high concentrations of carbon dioxide and oxygen in the biodiesel when additive was absent. Gas chromatography–mass spectrometry data showed that the unsaturated molecules in biodiesel could reduce the sustainability of metals upon exposure to biodiesel. However, metal surface degradation was significantly reduced in the presence of additives. In particular, benzotriazole and tert-butylamine considerably improved the sustainability of biodiesel by limiting metal surface degradation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion

Loading next page...
 
/lp/elsevier/sustainability-of-additive-doped-biodiesel-analysis-of-its-7OeMHnbjNc
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.248
Publisher site
See Article on Publisher Site

Abstract

The recent shortage of fossil fuel sources and the growing environmental concerns have considerably affected the necessity to search for alternative energy sources. The tremendous increase in energy demands in the transportation and industrial sectors has strengthened efforts to identify sustainable alternative fuel sources. In this regard, biodiesel can be considered a promising substitute for diesel. However, biodiesel is corrosive when it comes in contact with metals. The present study aims at investigating the sustainability of additive-doped biodiesel upon exposure of copper-based materials. A static immersion test was conducted at room temperature (25 °C–27 °C) for 2160 h. The metals used in the experiment were copper, leaded bronze, and phosphorous bronze. The investigated fuel was 100% palm biodiesel without and with additives (500 ppm), including tert-butylamine, benzotriazole, propyl gallate, pyrogallol, and butylated hydroxytoluene. The corrosion rate of the metals was determined at the end of the experiment via weight loss measurement. The metals were further characterized via scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Results showed that the corrosion rate of copper was considerably higher than those of the other metals. X-ray diffraction analysis indicated the presence of copper carbonate and cupric oxide on the copper surface that was exposed to biodiesel. The occurrence of these compounds could be attributed to the high concentrations of carbon dioxide and oxygen in the biodiesel when additive was absent. Gas chromatography–mass spectrometry data showed that the unsaturated molecules in biodiesel could reduce the sustainability of metals upon exposure to biodiesel. However, metal surface degradation was significantly reduced in the presence of additives. In particular, benzotriazole and tert-butylamine considerably improved the sustainability of biodiesel by limiting metal surface degradation.

Journal

Journal of Cleaner ProductionElsevier

Published: Apr 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off