Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model

Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical... A systematic field measurement was conducted at an island site (Wanshan Island, WSI) over the South China Sea (SCS) in autumn 2013. It was observed that mixing ratios of O3 and its precursors (such as volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and carbon monoxide (CO)) showed significant differences on non-episode days and episode days. Additional knowledge was gained when a photochemical box model incorporating the Master Chemical Mechanism (PBM-MCM) was applied to further investigate the differences/similarities of O3 photochemistry between non-episode and episode days, in terms of O3-precursor relationship, atmospheric photochemical reactivity and O3 production. The simulation results revealed that, from non-O3 episode days to episode days, 1) O3 production changed from both VOC and NOx-limited (transition regime) to VOC-limited; 2) OH radicals increased and photochemical reaction cycling processes accelerated; and 3) both O3 production and destruction rates increased significantly, resulting in an elevated net O3 production over the SCS. The findings indicate the complexity of O3 pollution over the SCS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model

Loading next page...
 
/lp/elsevier/surface-o3-photochemistry-over-the-south-china-sea-application-of-a-9Uvikaiifz
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.11.001
Publisher site
See Article on Publisher Site

Abstract

A systematic field measurement was conducted at an island site (Wanshan Island, WSI) over the South China Sea (SCS) in autumn 2013. It was observed that mixing ratios of O3 and its precursors (such as volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and carbon monoxide (CO)) showed significant differences on non-episode days and episode days. Additional knowledge was gained when a photochemical box model incorporating the Master Chemical Mechanism (PBM-MCM) was applied to further investigate the differences/similarities of O3 photochemistry between non-episode and episode days, in terms of O3-precursor relationship, atmospheric photochemical reactivity and O3 production. The simulation results revealed that, from non-O3 episode days to episode days, 1) O3 production changed from both VOC and NOx-limited (transition regime) to VOC-limited; 2) OH radicals increased and photochemical reaction cycling processes accelerated; and 3) both O3 production and destruction rates increased significantly, resulting in an elevated net O3 production over the SCS. The findings indicate the complexity of O3 pollution over the SCS.

Journal

Environmental PollutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off