Summation rules for a fully nonlocal energy-based quasicontinuum method

Summation rules for a fully nonlocal energy-based quasicontinuum method The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanics and Physics of Solids Elsevier

Summation rules for a fully nonlocal energy-based quasicontinuum method

Loading next page...
 
/lp/elsevier/summation-rules-for-a-fully-nonlocal-energy-based-quasicontinuum-7xFPqSKAjf
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0022-5096
eISSN
1873-4782
D.O.I.
10.1016/j.jmps.2015.03.007
Publisher site
See Article on Publisher Site

Abstract

The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method.

Journal

Journal of the Mechanics and Physics of SolidsElsevier

Published: Sep 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off