Sulfur-mediated photochemical energy harvesting in nanoporous carbons

Sulfur-mediated photochemical energy harvesting in nanoporous carbons This work provides new insights in the field of applied photochemistry based on semiconductor-free nanoporous carbons and its application to sunlight energy harvesting. Using carbon materials of increasing average pore size, chemical functionalization to introduce a variety of O- and S-containing functional groups and monochromatic light, we have shown the dependence of the photochemical conversion of phenol in the confinement of the carbons nanopore space with the wavelength of the irradiation source, the dimensions of the pore voids and their surface chemistry. The photochemical conversion of phenol inside the carbons pore space was found to be very sensitive to the nature of the S-containing groups and the confinement state of the adsorbed pollutant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carbon Elsevier

Sulfur-mediated photochemical energy harvesting in nanoporous carbons

Loading next page...
 
/lp/elsevier/sulfur-mediated-photochemical-energy-harvesting-in-nanoporous-carbons-nZJsgK1Qb6
Publisher
Elsevier
Copyright
Copyright © 2016 The Authors
ISSN
0008-6223
D.O.I.
10.1016/j.carbon.2016.02.058
Publisher site
See Article on Publisher Site

Abstract

This work provides new insights in the field of applied photochemistry based on semiconductor-free nanoporous carbons and its application to sunlight energy harvesting. Using carbon materials of increasing average pore size, chemical functionalization to introduce a variety of O- and S-containing functional groups and monochromatic light, we have shown the dependence of the photochemical conversion of phenol in the confinement of the carbons nanopore space with the wavelength of the irradiation source, the dimensions of the pore voids and their surface chemistry. The photochemical conversion of phenol inside the carbons pore space was found to be very sensitive to the nature of the S-containing groups and the confinement state of the adsorbed pollutant.

Journal

CarbonElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off