Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation

Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation Electrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neurological disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capabilities may be enabling, the extent to which finer spatial scale recording enhances functionally relevant neural state inference is unclear.We examine this question by employing a high-density and low impedance 400 μm pitch microECoG (μECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70–170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classification. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classification accuracy with higher grid density; in particular, 400 μm pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the first quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher-fidelity state estimation relative to devices at the millimeter-scale, motivating the development and testing of μECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation

Loading next page...
 
/lp/elsevier/sub-millimeter-ecog-pitch-in-human-enables-higher-fidelity-cognitive-1DDoNniXgO
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.04.027
Publisher site
See Article on Publisher Site

Abstract

Electrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neurological disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capabilities may be enabling, the extent to which finer spatial scale recording enhances functionally relevant neural state inference is unclear.We examine this question by employing a high-density and low impedance 400 μm pitch microECoG (μECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70–170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classification. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classification accuracy with higher grid density; in particular, 400 μm pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the first quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher-fidelity state estimation relative to devices at the millimeter-scale, motivating the development and testing of μECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses.

Journal

NeuroimageElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off