Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment

Study on transport characteristics of saliva droplets produced by coughing in a calm indoor... In this paper, the transport characteristics of saliva droplets produced by coughing are examined in a calm indoor environment. Three subjects are studied, with results indicating that more than 6.7 mg of saliva is expelled at speeds of up to 22 m/s during each individual cough, and that saliva droplets can travel further than 2 m. In addition, the dispersion processes of saliva droplets of different diameters expelled during coughing are analyzed using the Lagrangian equation. The results indicate that the transport characteristics of saliva droplets due to coughing change with size. The effects of gravity or inertia on droplets of 30 μm or less are negligible due to their small sizes, and therefore their transport is mostly influenced by the indoor flow field. Droplets of 50–200 μm, which are significantly affected by gravity, fall as the flow-field weakens. Droplets of 300 μm or more, which are affected more by inertia than gravity, fall difficultly. Moreover, the analytical results also indicate that the droplets’ transport is greatly influenced by the spatial relationship between the air-conditioner and the subjects. Finally, based on the experimental and analytical results, droplet infection by saliva droplets due to coughing is examined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment

Loading next page...
 
/lp/elsevier/study-on-transport-characteristics-of-saliva-droplets-produced-by-FmAzosl0j8
Publisher
Elsevier
Copyright
Copyright © 2005 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2005.06.024
Publisher site
See Article on Publisher Site

Abstract

In this paper, the transport characteristics of saliva droplets produced by coughing are examined in a calm indoor environment. Three subjects are studied, with results indicating that more than 6.7 mg of saliva is expelled at speeds of up to 22 m/s during each individual cough, and that saliva droplets can travel further than 2 m. In addition, the dispersion processes of saliva droplets of different diameters expelled during coughing are analyzed using the Lagrangian equation. The results indicate that the transport characteristics of saliva droplets due to coughing change with size. The effects of gravity or inertia on droplets of 30 μm or less are negligible due to their small sizes, and therefore their transport is mostly influenced by the indoor flow field. Droplets of 50–200 μm, which are significantly affected by gravity, fall as the flow-field weakens. Droplets of 300 μm or more, which are affected more by inertia than gravity, fall difficultly. Moreover, the analytical results also indicate that the droplets’ transport is greatly influenced by the spatial relationship between the air-conditioner and the subjects. Finally, based on the experimental and analytical results, droplet infection by saliva droplets due to coughing is examined.

Journal

Building and EnvironmentElsevier

Published: Dec 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off