Structures of turbulent premixed flames in the high Karlovitz number regime – DNS analysis

Structures of turbulent premixed flames in the high Karlovitz number regime – DNS analysis Lean premixed turbulent methane-air flames have been investigated using direct numerical simulations (DNS) for different Karlovitz numbers (Ka), ranging from 65 to 3350. The flames are imposed to a high intensity small-scale turbulent environment, corresponding to high Ka conditions, and the effect on the flame structure is investigated during the transition from initial laminar flame to highly distorted turbulent flame. The focus is on the internal structure of different sub-layers of these flames. The preheat layer, fuel consumption layer and oxidation layer are characterized by the distribution of formaldehyde, the fuel consumption rate and the CO consumption rate, respectively. Different measures that quantify sub-layer thickness for turbulent flames have been defined and analyzed. The flame brush is broadened with time while the local thickness (excluding large scale wrinkling) of all three layers initially show thinning due to the interaction of the flame with the turbulent flow field. As time passes, the local thickness of the preheat layer and fuel consumption layer are restored while the oxidation layer remains thinned due to suppression of CO consuming reactions. As Ka increases there is an increasing probability of finding thinned, large gradient regions in each of these sub-layers. The contribution to the evolution of flame thickness from normal strain rate, chemical reaction and normal and tangential diffusion is analyzed in terms of a gradient transport equation. The relative size of the terms changes as Ka increase and, in particular, the term due to chemical reactions loses its relative significance. The observed thinning of the local flame structure is attributed to the preferential alignment of the flame normal with the compressive strain rate eigenvectors. Such alignment provides a mechanism for the flame thinning, consistent with the behavior of non-reacting scalars. A preferred angle of about 20 degrees is observed between the flame normal and the compressive strain rate eigenvector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Structures of turbulent premixed flames in the high Karlovitz number regime – DNS analysis

Loading next page...
 
/lp/elsevier/structures-of-turbulent-premixed-flames-in-the-high-karlovitz-number-L95bqWWjSR
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.fuel.2017.12.046
Publisher site
See Article on Publisher Site

Abstract

Lean premixed turbulent methane-air flames have been investigated using direct numerical simulations (DNS) for different Karlovitz numbers (Ka), ranging from 65 to 3350. The flames are imposed to a high intensity small-scale turbulent environment, corresponding to high Ka conditions, and the effect on the flame structure is investigated during the transition from initial laminar flame to highly distorted turbulent flame. The focus is on the internal structure of different sub-layers of these flames. The preheat layer, fuel consumption layer and oxidation layer are characterized by the distribution of formaldehyde, the fuel consumption rate and the CO consumption rate, respectively. Different measures that quantify sub-layer thickness for turbulent flames have been defined and analyzed. The flame brush is broadened with time while the local thickness (excluding large scale wrinkling) of all three layers initially show thinning due to the interaction of the flame with the turbulent flow field. As time passes, the local thickness of the preheat layer and fuel consumption layer are restored while the oxidation layer remains thinned due to suppression of CO consuming reactions. As Ka increases there is an increasing probability of finding thinned, large gradient regions in each of these sub-layers. The contribution to the evolution of flame thickness from normal strain rate, chemical reaction and normal and tangential diffusion is analyzed in terms of a gradient transport equation. The relative size of the terms changes as Ka increase and, in particular, the term due to chemical reactions loses its relative significance. The observed thinning of the local flame structure is attributed to the preferential alignment of the flame normal with the compressive strain rate eigenvectors. Such alignment provides a mechanism for the flame thinning, consistent with the behavior of non-reacting scalars. A preferred angle of about 20 degrees is observed between the flame normal and the compressive strain rate eigenvector.

Journal

Journal of Cleaner ProductionElsevier

Published: Jul 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off