Structural transformations, water incorporation and transport properties of tin-substituted barium indate

Structural transformations, water incorporation and transport properties of tin-substituted... Incorporation of water into tin-substituted BaIn1-xSnxO3-δ (x = 0.1–0.3) is shown to influence crystal structure at room temperature, structural transformations at high temperatures and ionic transport properties of the materials. Increasing tin content stabilizes oxygen vacancy-disordered perovskite-type phase, which together with large changes of the unit cell volume occurring during hydration and dehydration processes, result in a complex structural behavior, as documented by high-temperature X-ray diffraction and thermogravimetric studies. Impedance spectroscopy measurements at elevated temperatures (350–800 °C) revealed very high proton conductivity in BaIn.8Sn.2O3-δ, exceeding 1.1·10−3 S cm−1 at 500 °C, with high values of the transference number in wet air. At the same time, relaxation kinetics of the electrical conductivity showed a monotonous nature, which indicates negligible component of the electronic hole conductivity in the hydrated material. The oxides are extremely moisture-sensitive, which results in a significant mechanical stability problems, affecting possibility to prepare electrolyte membranes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Structural transformations, water incorporation and transport properties of tin-substituted barium indate

Loading next page...
 
/lp/elsevier/structural-transformations-water-incorporation-and-transport-TaT83iOmSq
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.03.004
Publisher site
See Article on Publisher Site

Abstract

Incorporation of water into tin-substituted BaIn1-xSnxO3-δ (x = 0.1–0.3) is shown to influence crystal structure at room temperature, structural transformations at high temperatures and ionic transport properties of the materials. Increasing tin content stabilizes oxygen vacancy-disordered perovskite-type phase, which together with large changes of the unit cell volume occurring during hydration and dehydration processes, result in a complex structural behavior, as documented by high-temperature X-ray diffraction and thermogravimetric studies. Impedance spectroscopy measurements at elevated temperatures (350–800 °C) revealed very high proton conductivity in BaIn.8Sn.2O3-δ, exceeding 1.1·10−3 S cm−1 at 500 °C, with high values of the transference number in wet air. At the same time, relaxation kinetics of the electrical conductivity showed a monotonous nature, which indicates negligible component of the electronic hole conductivity in the hydrated material. The oxides are extremely moisture-sensitive, which results in a significant mechanical stability problems, affecting possibility to prepare electrolyte membranes.

Journal

Journal of Solid State ChemistryElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off