Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries

Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in... We investigated a structural stabilizing effect of large x values on enhancing cyclability for the SiOx electrode with large areal capacity. Electrodes composed of a-SiOx film on roughened Cu substrate with the same areal capacity (2 mAh cm−2) were prepared, so that changes in volume of the lithiated SiOx per unit electrode area were equal. Cycle tests were performed for three x values (0.17, 0.68, 1.02) using half-cell and the morphology of electrodes were analyzed by SEM. Higher x values were found to result in larger inactive phase contents and demonstrated superior cyclability. The SiO1.02 electrode contained 11 times more inactive phase than the SiO0.17 and showed a capacity retention of 98% after 30 cycles. For the SiO0.17 electrode, structural changes such as the pulverization of the particles, fracturing of the electrodeposited Cu tips caused electrical isolation of Li–Si. For the SiO1.02 electrode, the structure was extremely stable. These results reveal that even in electrodes with large areal capacity, the inactive phase exhibited the great buffering effect of the change in volume of Li–Si. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries

Loading next page...
 
/lp/elsevier/structural-stabilization-on-siox-film-anode-with-large-areal-capacity-PCpFtuOo4S
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.061
Publisher site
See Article on Publisher Site

Abstract

We investigated a structural stabilizing effect of large x values on enhancing cyclability for the SiOx electrode with large areal capacity. Electrodes composed of a-SiOx film on roughened Cu substrate with the same areal capacity (2 mAh cm−2) were prepared, so that changes in volume of the lithiated SiOx per unit electrode area were equal. Cycle tests were performed for three x values (0.17, 0.68, 1.02) using half-cell and the morphology of electrodes were analyzed by SEM. Higher x values were found to result in larger inactive phase contents and demonstrated superior cyclability. The SiO1.02 electrode contained 11 times more inactive phase than the SiO0.17 and showed a capacity retention of 98% after 30 cycles. For the SiO0.17 electrode, structural changes such as the pulverization of the particles, fracturing of the electrodeposited Cu tips caused electrical isolation of Li–Si. For the SiO1.02 electrode, the structure was extremely stable. These results reveal that even in electrodes with large areal capacity, the inactive phase exhibited the great buffering effect of the change in volume of Li–Si.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off