Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas

Structural optimization and experimental investigation of supersonic ejectors for boosting low... The supersonic ejector was introduced into boosting the production of low pressure natural gas wells. The energy of high pressure gas wells, which was usually wasted through choke valves, was used as its power supply to boost the low gas production. The operating performance of natural gas ejectors was determined not only by the operating parameters but also by the structural parameters. This study focused on the structural optimization and operating performance of natural gas ejectors. The optimal structural parameters were obtained by numerical simulation when the maximum pressure ratio was obtained, and the numerical results were validated by experimental investigation. The numerical results showed that the optimal diameter ratio of mixing tube to primary nozzle throat was 1.6, the optimal length to diameter ratio of mixing tube was 4.0 and the optimal inclination angle of mixing chamber was 28°. The entrainment ratios and pressure ratios from the numerical simulation agreed well with the field experimental data, with the maximum value of pressure ratio up to 60%. The operating performance of the supersonic ejector was also investigated by the field experiment, and the results showed that the induced gas flowrate and entrainment ratio showed nonlinear characteristics with peak values when the motive pressure ranged from 8 MPa to 13 MPa. These experimental results have proved the optimized structural parameters of the supersonic ejector. The investigation will help to the further application in boosting natural gas production of supersonic ejector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Thermal Engineering Elsevier

Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas

Loading next page...
 
/lp/elsevier/structural-optimization-and-experimental-investigation-of-supersonic-BWR0df0vkH
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
1359-4311
eISSN
1873-5606
D.O.I.
10.1016/j.applthermaleng.2009.01.014
Publisher site
See Article on Publisher Site

Abstract

The supersonic ejector was introduced into boosting the production of low pressure natural gas wells. The energy of high pressure gas wells, which was usually wasted through choke valves, was used as its power supply to boost the low gas production. The operating performance of natural gas ejectors was determined not only by the operating parameters but also by the structural parameters. This study focused on the structural optimization and operating performance of natural gas ejectors. The optimal structural parameters were obtained by numerical simulation when the maximum pressure ratio was obtained, and the numerical results were validated by experimental investigation. The numerical results showed that the optimal diameter ratio of mixing tube to primary nozzle throat was 1.6, the optimal length to diameter ratio of mixing tube was 4.0 and the optimal inclination angle of mixing chamber was 28°. The entrainment ratios and pressure ratios from the numerical simulation agreed well with the field experimental data, with the maximum value of pressure ratio up to 60%. The operating performance of the supersonic ejector was also investigated by the field experiment, and the results showed that the induced gas flowrate and entrainment ratio showed nonlinear characteristics with peak values when the motive pressure ranged from 8 MPa to 13 MPa. These experimental results have proved the optimized structural parameters of the supersonic ejector. The investigation will help to the further application in boosting natural gas production of supersonic ejector.

Journal

Applied Thermal EngineeringElsevier

Published: Oct 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off