Structural evolution and permeability of normal fault zones in highly porous carbonate rocks

Structural evolution and permeability of normal fault zones in highly porous carbonate rocks The structural evolution of cataclastic fault cores from nucleation to growth was studied for the case of normal fault zones affecting high-porosity carbonates in the Hyblean Plateau, Sicily. A comparison was made between faults with increasing displacements affecting a similar lithology at shallow depth conditions. In the first few millimetres to centimetres adjacent to the fault surface, porosity is significantly reduced by a sequence of pore collapse, grain crushing, rotation-enhanced abrasion and calcite precipitation, which is a function of increasing displacement. Consequently, fault planes have strongly reduced permeability even for very small displacements. Adjacent damage zones are characterized by fracture density and connectivity increasing toward the fault plane. Cataclastic rock production and consequent fault-core development initiate as the fault displacement reaches values of 1–5 m. This displacement threshold coincides with a decrease in the widening of the damage zone per unit increase of fault displacement, which relates to a change in the mechanism of deformation accumulation in the fault zone. The change is interpreted to result from strain-softening in the fault zone due to the onset of cataclasis. Permeability data indicate that normal faults in high-porosity carbonates are effective transversal seals even at very small offsets and their combined conduit-barrier hydraulic behaviour is accentuated as displacement increases. These results show some similarities but key differences with respect to fault zone development for the analogous cases of sandstones and low-porosity limestones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Geology Elsevier

Structural evolution and permeability of normal fault zones in highly porous carbonate rocks

Loading next page...
 
/lp/elsevier/structural-evolution-and-permeability-of-normal-fault-zones-in-highly-0M02O2AUCM
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier Ltd
ISSN
0191-8141
eISSN
1873-1201
D.O.I.
10.1016/j.jsg.2006.03.036
Publisher site
See Article on Publisher Site

Abstract

The structural evolution of cataclastic fault cores from nucleation to growth was studied for the case of normal fault zones affecting high-porosity carbonates in the Hyblean Plateau, Sicily. A comparison was made between faults with increasing displacements affecting a similar lithology at shallow depth conditions. In the first few millimetres to centimetres adjacent to the fault surface, porosity is significantly reduced by a sequence of pore collapse, grain crushing, rotation-enhanced abrasion and calcite precipitation, which is a function of increasing displacement. Consequently, fault planes have strongly reduced permeability even for very small displacements. Adjacent damage zones are characterized by fracture density and connectivity increasing toward the fault plane. Cataclastic rock production and consequent fault-core development initiate as the fault displacement reaches values of 1–5 m. This displacement threshold coincides with a decrease in the widening of the damage zone per unit increase of fault displacement, which relates to a change in the mechanism of deformation accumulation in the fault zone. The change is interpreted to result from strain-softening in the fault zone due to the onset of cataclasis. Permeability data indicate that normal faults in high-porosity carbonates are effective transversal seals even at very small offsets and their combined conduit-barrier hydraulic behaviour is accentuated as displacement increases. These results show some similarities but key differences with respect to fault zone development for the analogous cases of sandstones and low-porosity limestones.

Journal

Journal of Structural GeologyElsevier

Published: Jul 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off