Structural and Dynamics Studies of Pax5 Reveal Asymmetry in Stability and DNA Binding by the Paired Domain

Structural and Dynamics Studies of Pax5 Reveal Asymmetry in Stability and DNA Binding by the... The eukaryotic transcription factor Pax5 or B-cell specific activator protein (BSAP) is central to B-cell development and has been implicated in a large number of cellular malignancies resulting from loss- or gain-of-function mutations. In this study, we characterized the DNA-binding Paired domain (PD) of Pax5 in its free and DNA-bound forms using NMR spectroscopy. In isolation, the PD folds as two independent helical bundle subdomains separated by a conformationally disordered linker. The two subdomains differ in stability, with the C-terminal subdomain (CTD) being ~10-fold more protected from amide hydrogen exchange (HX) than the N-terminal subdomain (NTD). Upon binding DNA, the linker and an induced N-terminal β-hairpin become ordered with significantly dampened motions and increased HX protection. Both subdomains of the PD contribute to specific DNA binding, resulting in an equilibrium dissociation constant more than three orders of magnitude lower than exhibited by the separate subdomains for their respective half-sites (nM versus μM). The isolated CTD binds non-specific DNA sequences with only ~10-fold weaker affinity than cognate sequences. In contrast, the NTD associates very poorly with non-specific DNA. We propose that the more stable CTD has evolved to provide relatively low affinity non-specific contacts with DNA. In contrast, the more dynamic NTD discriminates between cognate and non-specific sites. The distinct roles of the PD subdomains may enable efficient searching of genomic DNA by Pax5 while retaining specificity for functional regulatory sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Biology Elsevier

Structural and Dynamics Studies of Pax5 Reveal Asymmetry in Stability and DNA Binding by the Paired Domain

Loading next page...
 
/lp/elsevier/structural-and-dynamics-studies-of-pax5-reveal-asymmetry-in-stability-RDMiBCHh9M
Publisher
Academic Press
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0022-2836
D.O.I.
10.1016/j.jmb.2016.04.004
Publisher site
See Article on Publisher Site

Abstract

The eukaryotic transcription factor Pax5 or B-cell specific activator protein (BSAP) is central to B-cell development and has been implicated in a large number of cellular malignancies resulting from loss- or gain-of-function mutations. In this study, we characterized the DNA-binding Paired domain (PD) of Pax5 in its free and DNA-bound forms using NMR spectroscopy. In isolation, the PD folds as two independent helical bundle subdomains separated by a conformationally disordered linker. The two subdomains differ in stability, with the C-terminal subdomain (CTD) being ~10-fold more protected from amide hydrogen exchange (HX) than the N-terminal subdomain (NTD). Upon binding DNA, the linker and an induced N-terminal β-hairpin become ordered with significantly dampened motions and increased HX protection. Both subdomains of the PD contribute to specific DNA binding, resulting in an equilibrium dissociation constant more than three orders of magnitude lower than exhibited by the separate subdomains for their respective half-sites (nM versus μM). The isolated CTD binds non-specific DNA sequences with only ~10-fold weaker affinity than cognate sequences. In contrast, the NTD associates very poorly with non-specific DNA. We propose that the more stable CTD has evolved to provide relatively low affinity non-specific contacts with DNA. In contrast, the more dynamic NTD discriminates between cognate and non-specific sites. The distinct roles of the PD subdomains may enable efficient searching of genomic DNA by Pax5 while retaining specificity for functional regulatory sites.

Journal

Journal of Molecular BiologyElsevier

Published: Jun 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off