Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans

Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components... More than 50 years ago the owl monkey (genus Aotus) was found to be highly susceptible to developing human malaria, making it an excellent experimental model for this disease. Microbes and parasites' (especially malaria) tremendous genetic variability became resolved during our malaria vaccine development, involving conserved peptides having high host cell binding activity (cHABPs); however, cHABPs are immunologically silent and must be specially modified (mHABPs) to induce a perfect fit into major histocompatibility complex (MHC) molecules (HLA in humans). Since malarial immunity is mainly antibody-mediated and controlled by the HLA-DRB genetic region, ∼1000 Aotus have been molecularly characterised for MHC-DRB, revealing striking similarity between human and Aotus MHC-DRB repertories. Such convergence suggested that a large group of immune protection-inducing protein structures (IMPIPS), highly immunogenic and protection inducers against malarial intravenous challenge in Aotus, could easily be used in humans for inducing full protection against malaria. We highlight the value of a logical and rational methodology for developing a vaccine in an appropriate animal model: Aotus monkeys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans

Loading next page...
 
/lp/elsevier/structural-analysis-of-owl-monkey-mhc-dr-shows-that-fully-protective-o0Z10VNbd0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.08.012
Publisher site
See Article on Publisher Site

Abstract

More than 50 years ago the owl monkey (genus Aotus) was found to be highly susceptible to developing human malaria, making it an excellent experimental model for this disease. Microbes and parasites' (especially malaria) tremendous genetic variability became resolved during our malaria vaccine development, involving conserved peptides having high host cell binding activity (cHABPs); however, cHABPs are immunologically silent and must be specially modified (mHABPs) to induce a perfect fit into major histocompatibility complex (MHC) molecules (HLA in humans). Since malarial immunity is mainly antibody-mediated and controlled by the HLA-DRB genetic region, ∼1000 Aotus have been molecularly characterised for MHC-DRB, revealing striking similarity between human and Aotus MHC-DRB repertories. Such convergence suggested that a large group of immune protection-inducing protein structures (IMPIPS), highly immunogenic and protection inducers against malarial intravenous challenge in Aotus, could easily be used in humans for inducing full protection against malaria. We highlight the value of a logical and rational methodology for developing a vaccine in an appropriate animal model: Aotus monkeys.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off