Stress–strain model of FRP confined concrete under cyclic loading

Stress–strain model of FRP confined concrete under cyclic loading A stress–strain model is proposed for fiber reinforced polymer (FRP) confined concrete subjected to cyclic compression. This model employs an existing monotonic stress–strain relationship as the envelope curve. The cyclic load paths are formed by using a new and simple algebraic function. Concrete strength and confinement stiffness ratio are selected as the main factors that govern the parameters of the unloading and reloading paths. Available experimental results are used to evaluate the model parameters. The model uses more appropriate mathematical forms and includes significant factors ignored previously by others which makes it not only more rational and accurate but also simpler than other existing models reported in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Stress–strain model of FRP confined concrete under cyclic loading

Loading next page...
 
/lp/elsevier/stress-strain-model-of-frp-confined-concrete-under-cyclic-loading-ofh0GFg0yJ
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.056
Publisher site
See Article on Publisher Site

Abstract

A stress–strain model is proposed for fiber reinforced polymer (FRP) confined concrete subjected to cyclic compression. This model employs an existing monotonic stress–strain relationship as the envelope curve. The cyclic load paths are formed by using a new and simple algebraic function. Concrete strength and confinement stiffness ratio are selected as the main factors that govern the parameters of the unloading and reloading paths. Available experimental results are used to evaluate the model parameters. The model uses more appropriate mathematical forms and includes significant factors ignored previously by others which makes it not only more rational and accurate but also simpler than other existing models reported in the literature.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial