Stress singularity in a rectangular bond specimen of a solid rocket motor: Effects and elimination

Stress singularity in a rectangular bond specimen of a solid rocket motor: Effects and elimination The propellant/liner interface is the weakest and most concerning part of the grain structure in a solid rocket motor. Rectangular bond specimen tests have gradually become one of the standard methods to measure the bonding abilities of propellant/liner/insulation joints. We performed a three-dimensional numerical study to give full knowledge of this new test, paying close attention to the stress singularity at the crack tip. The asymptotic stress field was presented to show the singularity at the crack tip on the steel/insulation interface. Subsequently the stress singularity was investigated numerically. Numerical results show that the stress singularity has a considerable effect on the stress distribution of the nearby propellant. Also we proposed some methods to eliminate these effects, such as inserting a cohesive zone model into the steel/insulation interface or increasing the thickness of insulation layer. Moreover, Mises stress and maximum principle stress have completely opposite distributions on the propellant/liner interface; thus the accurate failure criterion can be confirmed by the damage initialization observed in experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Stress singularity in a rectangular bond specimen of a solid rocket motor: Effects and elimination

Loading next page...
 
/lp/elsevier/stress-singularity-in-a-rectangular-bond-specimen-of-a-solid-rocket-NPPIcrV4mP
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2015.08.003
Publisher site
See Article on Publisher Site

Abstract

The propellant/liner interface is the weakest and most concerning part of the grain structure in a solid rocket motor. Rectangular bond specimen tests have gradually become one of the standard methods to measure the bonding abilities of propellant/liner/insulation joints. We performed a three-dimensional numerical study to give full knowledge of this new test, paying close attention to the stress singularity at the crack tip. The asymptotic stress field was presented to show the singularity at the crack tip on the steel/insulation interface. Subsequently the stress singularity was investigated numerically. Numerical results show that the stress singularity has a considerable effect on the stress distribution of the nearby propellant. Also we proposed some methods to eliminate these effects, such as inserting a cohesive zone model into the steel/insulation interface or increasing the thickness of insulation layer. Moreover, Mises stress and maximum principle stress have completely opposite distributions on the propellant/liner interface; thus the accurate failure criterion can be confirmed by the damage initialization observed in experiments.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Dec 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off