Strength of plate coupling in the southern Ryukyu subduction zone

Strength of plate coupling in the southern Ryukyu subduction zone Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw>7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonophysics Elsevier

Strength of plate coupling in the southern Ryukyu subduction zone

Loading next page...
 
/lp/elsevier/strength-of-plate-coupling-in-the-southern-ryukyu-subduction-zone-wMpZPzQUjg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0040-1951
eISSN
1879-3266
D.O.I.
10.1016/j.tecto.2017.12.028
Publisher site
See Article on Publisher Site

Abstract

Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw>7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future.

Journal

TectonophysicsElsevier

Published: Jan 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off