Strain rate-induced plasticity in bcc β-Ti alloy single crystal micropillars containing brittle ω-precipitates

Strain rate-induced plasticity in bcc β-Ti alloy single crystal micropillars containing brittle... Brittle ω-precipitates in bcc β-Ti alloys are well known to dramatically degrade material plasticity and even trigger macroscopic premature fracture, posing an obstacle for structural applications. The embrittlement mechanism is intimately related to dislocation pile-up at the ω/β interface that leads to stress concentration and undesirable failure. The underlying physics of improving ductility remains to be further uncovered. Here we report a new finding in β-Ti alloy single crystal micropillar compression that the plasticity can be substantially improved by means of increasing strain rate, while mechanical strength simultaneously exhibits striking “faster is stronger” fashion. The results reveal that the improvement of micropillar plasticity upon higher loading rate can be ascribed to the wider deformation band, in contrast to equivalents under quasi-static mode. The microscopic examination shows that cross slip induced by screw dislocations governs the plasticity improvement, which is further validated by crystallographic analysis and first principle energy landscape calculations. This “dynamic self-toughening” behavior advances our fundamental understanding to the plastic deformation mechanism of ω-precipitate contained bcc β-Ti alloys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Strain rate-induced plasticity in bcc β-Ti alloy single crystal micropillars containing brittle ω-precipitates

Loading next page...
 
/lp/elsevier/strain-rate-induced-plasticity-in-bcc-ti-alloy-single-crystal-oFLgOwl5PC
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.10.036
Publisher site
See Article on Publisher Site

Abstract

Brittle ω-precipitates in bcc β-Ti alloys are well known to dramatically degrade material plasticity and even trigger macroscopic premature fracture, posing an obstacle for structural applications. The embrittlement mechanism is intimately related to dislocation pile-up at the ω/β interface that leads to stress concentration and undesirable failure. The underlying physics of improving ductility remains to be further uncovered. Here we report a new finding in β-Ti alloy single crystal micropillar compression that the plasticity can be substantially improved by means of increasing strain rate, while mechanical strength simultaneously exhibits striking “faster is stronger” fashion. The results reveal that the improvement of micropillar plasticity upon higher loading rate can be ascribed to the wider deformation band, in contrast to equivalents under quasi-static mode. The microscopic examination shows that cross slip induced by screw dislocations governs the plasticity improvement, which is further validated by crystallographic analysis and first principle energy landscape calculations. This “dynamic self-toughening” behavior advances our fundamental understanding to the plastic deformation mechanism of ω-precipitate contained bcc β-Ti alloys.

Journal

Materials & designElsevier

Published: Jan 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off