Stem Cell-Based Human Blood–Brain Barrier Models for Drug Discovery and Delivery

Stem Cell-Based Human Blood–Brain Barrier Models for Drug Discovery and Delivery The development of novel neuropharmaceuticals requires the evaluation of blood–brain barrier (BBB) permeability and toxicity. Recent studies have highlighted differences in the BBB among different species, with the most important differences involving the expression of P-glycoprotein (P-gp), multidrug resistance-associated proteins, transporters, and claudins. In addition, functional studies have shown that brain pharmacokinetics of P-glycoprotein substrates are different in humans and rodents. Therefore, human BBB models may be an important platform for initial drug screening before in vivo studies. This strategy might help to reduce costs in drug development and failures in clinical studies. We review the differences in the BBB among species, recent advances in the generation of human BBB models, and their applications in drug discovery and delivery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

Stem Cell-Based Human Blood–Brain Barrier Models for Drug Discovery and Delivery

Loading next page...
 
/lp/elsevier/stem-cell-based-human-blood-brain-barrier-models-for-drug-discovery-8lctkXiLDP
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2016.01.001
Publisher site
See Article on Publisher Site

Abstract

The development of novel neuropharmaceuticals requires the evaluation of blood–brain barrier (BBB) permeability and toxicity. Recent studies have highlighted differences in the BBB among different species, with the most important differences involving the expression of P-glycoprotein (P-gp), multidrug resistance-associated proteins, transporters, and claudins. In addition, functional studies have shown that brain pharmacokinetics of P-glycoprotein substrates are different in humans and rodents. Therefore, human BBB models may be an important platform for initial drug screening before in vivo studies. This strategy might help to reduce costs in drug development and failures in clinical studies. We review the differences in the BBB among species, recent advances in the generation of human BBB models, and their applications in drug discovery and delivery.

Journal

Trends in BiotechnologyElsevier

Published: May 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off