This study investigated the solution behaviors and sol–gel transition of myofibrillar protein (MP) from grass carp muscle by rheological methods. In steady shear measurements, shear-thinning behavior was observed in the MP solutions and became more apparent with increasing concentration (c), though Newtonian plateaus appeared at c ≤ 0.025 mg/mL. Based on the Cross model, zero shear viscosity (η0) and structural relaxation time (K) increased with increasing c, indicating the reinforcement of chain interaction and entanglement. From the dependence of η0 on c, the MP showed the rod-like polymer features due to its α-helical tail, and the coil overlap concentration (c*) was estimated to be 4.5 mg/mL, at which the MP coils begin to overlap and interpenetrate undergoing the transition from a dilute to concentrated solution. In frequency sweep, the MP system was classified to two regions: an entanglement network or concentrated solution (5 and 10 mg/mL), and a weak gel (15 and 20 mg/mL). Furthermore, the sol–gel transition concentration (cgel) was further identified as 13 mg/mL by the Winter–Chambon criterion. According to the creep-recovery data fitted by the Burger model, the elastic coefficients (G1 and G2) and viscous coefficients (η1 and η2) increased with increasing temperature (5–40 °C), while the maximum deformation (JMAX) and residual deformation (J∞) decreased, leading to an increase in the final percentage recovery (R%). This result indicated that the chain rigidity of MP increased with elevated temperature, the MP gel network formed and became stronger, confirming the denaturation, aggregation and pre-gelation of MP at ∼40 °C.
Food Hydrocolloids – Elsevier
Published: Dec 1, 2016
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.
All for just $49/month
Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.
Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.
It’s easy to organize your research with our built-in tools.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
$49/month
14-day Free Trial
$588
$360/year
14-day Free Trial
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.