Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow

Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow Deposition of particles towards the wall from a turbulent dispersed flow in a vertical pipe has been studied numerically. A fully developed turbulent pipe flow of air is chosen as the primary flow, and it is represented by the law-of-the-wall relations and the average turbulence statistics obtained from a direct numerical simulation reported in the literature. Trajectories and velocities of the particles are calculated, using a one-way coupling Lagrangian eddy–particle interaction model. Thousands of individual particles (typically 920 kg/m 3 in density) of various diameters (2.0–68.5 μm) are released in the represented flow, and deposition velocities are evaluated. It is shown that the deposition velocities predicted are in good agreement with experimental data available in the literature. The influence of some forces in the particle equation of motion (i.e., the Saffman lift force, the centrifugal force, the conservation of angular momentum and the buoyancy force) on the prediction of the deposition velocities is examined. Also examined is the influence of the inlet particle concentration profile, on which little attention has been paid so far. The unique phenomenon of ‘near-wall build-up’ of small particles, which has been reported in some previous simulations and experiments, was also observed in the present simulation while the result for very small particles ( τ p + <3) should be accepted with reservation due to their possible spurious build-up associated with the random-walk approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Heat and Fluid Flow Elsevier

Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow

Loading next page...
 
/lp/elsevier/statistical-simulation-of-particle-deposition-on-the-wall-from-CYdW4Y4AXo
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science Inc.
ISSN
0142-727X
eISSN
1879-2278
D.O.I.
10.1016/S0142-727X(00)00004-7
Publisher site
See Article on Publisher Site

Abstract

Deposition of particles towards the wall from a turbulent dispersed flow in a vertical pipe has been studied numerically. A fully developed turbulent pipe flow of air is chosen as the primary flow, and it is represented by the law-of-the-wall relations and the average turbulence statistics obtained from a direct numerical simulation reported in the literature. Trajectories and velocities of the particles are calculated, using a one-way coupling Lagrangian eddy–particle interaction model. Thousands of individual particles (typically 920 kg/m 3 in density) of various diameters (2.0–68.5 μm) are released in the represented flow, and deposition velocities are evaluated. It is shown that the deposition velocities predicted are in good agreement with experimental data available in the literature. The influence of some forces in the particle equation of motion (i.e., the Saffman lift force, the centrifugal force, the conservation of angular momentum and the buoyancy force) on the prediction of the deposition velocities is examined. Also examined is the influence of the inlet particle concentration profile, on which little attention has been paid so far. The unique phenomenon of ‘near-wall build-up’ of small particles, which has been reported in some previous simulations and experiments, was also observed in the present simulation while the result for very small particles ( τ p + <3) should be accepted with reservation due to their possible spurious build-up associated with the random-walk approach.

Journal

International Journal of Heat and Fluid FlowElsevier

Published: Aug 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off