Stable isotopic composition reveals the spatial and temporal dynamics of discharge in the large river of Yarlungzangbo in the Tibetan Plateau

Stable isotopic composition reveals the spatial and temporal dynamics of discharge in the large... Spatial and temporal variability in stable isotopic compositions (δ18O and δD) in river water of the Yarlungzangbo was investigated to identify major hydrological processes along the river channel and evaluate the isotopic response to discharge variation. The results show geographic, distinct isotopic evolutions in the Yarlungzangbo system. Along the main stem, river δ18O exhibits a decreasing trend from the headwaters to the middle reach but an increasing one from the middle to the lower reaches, and main flows demonstrate much greater δ18O-δD slope and intercept compared to the global meteoric water line (GMWL) and reported local meteoric water lines (LMWLs) for sites within the basin. These results are found to be consistent with the isotopic characteristics of stream and river waters collected across the entire drainage basin. Water mixing appears to be the dominant hydrological process along the Yarlungzangbo, and the pattern of isotopic change in individual river reaches closely reflects that of precipitation in corresponding part of the river basin. The isotopic variability along the main stem observed during the synoptic survey is evidenced to hold through time by a time-series investigation at three key hydrological stations. River water at such three stations shows a strong isotopic response to discharge variability. In general, river δ18O tends to be negatively correlated with discharge, highlighting a typical monsoon precipitation-driven isotope-discharge pattern. Specifically, we found their individual discharge-weighted average δ18O values likely vary in a similar rate with the ratio of mean discharge in monsoon season (JAS) to that in pre-monsoon season (MJ) on a yearly basis, indicating a specific relationship between average river isotopic composition and discharge seasonality throughout their drainage areas (i.e. the middle-lower Yarlungzangbo basin). This study thus demonstrates the usefulness of isotopic data for assessing hydrodynamics over a less explored, complex and high-altitude large river catchment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Stable isotopic composition reveals the spatial and temporal dynamics of discharge in the large river of Yarlungzangbo in the Tibetan Plateau

Loading next page...
 
/lp/elsevier/stable-isotopic-composition-reveals-the-spatial-and-temporal-dynamics-VxESseCBdX
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.310
Publisher site
See Article on Publisher Site

Abstract

Spatial and temporal variability in stable isotopic compositions (δ18O and δD) in river water of the Yarlungzangbo was investigated to identify major hydrological processes along the river channel and evaluate the isotopic response to discharge variation. The results show geographic, distinct isotopic evolutions in the Yarlungzangbo system. Along the main stem, river δ18O exhibits a decreasing trend from the headwaters to the middle reach but an increasing one from the middle to the lower reaches, and main flows demonstrate much greater δ18O-δD slope and intercept compared to the global meteoric water line (GMWL) and reported local meteoric water lines (LMWLs) for sites within the basin. These results are found to be consistent with the isotopic characteristics of stream and river waters collected across the entire drainage basin. Water mixing appears to be the dominant hydrological process along the Yarlungzangbo, and the pattern of isotopic change in individual river reaches closely reflects that of precipitation in corresponding part of the river basin. The isotopic variability along the main stem observed during the synoptic survey is evidenced to hold through time by a time-series investigation at three key hydrological stations. River water at such three stations shows a strong isotopic response to discharge variability. In general, river δ18O tends to be negatively correlated with discharge, highlighting a typical monsoon precipitation-driven isotope-discharge pattern. Specifically, we found their individual discharge-weighted average δ18O values likely vary in a similar rate with the ratio of mean discharge in monsoon season (JAS) to that in pre-monsoon season (MJ) on a yearly basis, indicating a specific relationship between average river isotopic composition and discharge seasonality throughout their drainage areas (i.e. the middle-lower Yarlungzangbo basin). This study thus demonstrates the usefulness of isotopic data for assessing hydrodynamics over a less explored, complex and high-altitude large river catchment.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off