Stability of diketopyrrolopyrrole small-molecule inverted organic solar cells

Stability of diketopyrrolopyrrole small-molecule inverted organic solar cells Small-molecule DPP(TBFu)2-based inverted organic solar cells were fabricated and their stability investigated. The effects of thermal annealing and solvent annealing on device performance and stability were compared. To increase the stability, mix-PCBM (PC61BM and its C70 analogue), which is reported to give higher device stability, was also included. Solvent-annealed devices showed the highest power conversion efficiency (PCE) of 4.62%, whereas thermally annealed devices showed a PCE of 3.94%. After the aging process, which involved thermal stress and exposure to air, thermally annealed and mix-PCBM devices retained a PCE of 3%, whereas solvent-annealed devices had a much lower PCE of 1.7%. Therefore, our results show that in the long-term stability perspective, thermal annealing is better than solvent annealing, and mix-PCBM is better than PC61BM in the case of DPP(TBFu)2. We fabricated small-molecule inverted organic solar cells that retain their performance in air for 3 weeks without encapsulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Stability of diketopyrrolopyrrole small-molecule inverted organic solar cells

Loading next page...
 
/lp/elsevier/stability-of-diketopyrrolopyrrole-small-molecule-inverted-organic-gyaWBhIqlF
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.022
Publisher site
See Article on Publisher Site

Abstract

Small-molecule DPP(TBFu)2-based inverted organic solar cells were fabricated and their stability investigated. The effects of thermal annealing and solvent annealing on device performance and stability were compared. To increase the stability, mix-PCBM (PC61BM and its C70 analogue), which is reported to give higher device stability, was also included. Solvent-annealed devices showed the highest power conversion efficiency (PCE) of 4.62%, whereas thermally annealed devices showed a PCE of 3.94%. After the aging process, which involved thermal stress and exposure to air, thermally annealed and mix-PCBM devices retained a PCE of 3%, whereas solvent-annealed devices had a much lower PCE of 1.7%. Therefore, our results show that in the long-term stability perspective, thermal annealing is better than solvent annealing, and mix-PCBM is better than PC61BM in the case of DPP(TBFu)2. We fabricated small-molecule inverted organic solar cells that retain their performance in air for 3 weeks without encapsulation.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off