Spontaneous sleep in mice with targeted disruptions of neuronal or inducible nitric oxide synthase genes

Spontaneous sleep in mice with targeted disruptions of neuronal or inducible nitric oxide... Nitric oxide (NO) affects almost every physiological process, including the regulation of sleep. There is strong evidence that NO plays an important role in rapid eye movement sleep (REMS) regulation. To further investigate the role of NO in sleep, we characterized spontaneous sleep in mice with targeted disruptions (knockout; KO) in the neuronal nitric oxide synthase (nNOS) or inducible (i)NOS genes. REMS in nNOS KO mice was substantially lower than that of their control mice. In contrast, the iNOS KO mice had significantly more REMS than their controls. Inducible NOS KO mice also had less non-REMS (NREMS) during the dark period. Results suggest that nNOS and iNOS play opposite roles in REMS regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Spontaneous sleep in mice with targeted disruptions of neuronal or inducible nitric oxide synthase genes

Loading next page...
 
/lp/elsevier/spontaneous-sleep-in-mice-with-targeted-disruptions-of-neuronal-or-eQf6aLLliP
Publisher
Elsevier
Copyright
Copyright © 2003 Elsevier Science B.V.
ISSN
0006-8993
DOI
10.1016/S0006-8993(03)02484-3
Publisher site
See Article on Publisher Site

Abstract

Nitric oxide (NO) affects almost every physiological process, including the regulation of sleep. There is strong evidence that NO plays an important role in rapid eye movement sleep (REMS) regulation. To further investigate the role of NO in sleep, we characterized spontaneous sleep in mice with targeted disruptions (knockout; KO) in the neuronal nitric oxide synthase (nNOS) or inducible (i)NOS genes. REMS in nNOS KO mice was substantially lower than that of their control mice. In contrast, the iNOS KO mice had significantly more REMS than their controls. Inducible NOS KO mice also had less non-REMS (NREMS) during the dark period. Results suggest that nNOS and iNOS play opposite roles in REMS regulation.

Journal

Brain ResearchElsevier

Published: May 30, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off