Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and... In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of OH⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6–311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular OH⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular OH⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm−1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm−1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV–visible (UV–Vis) spectra of the compounds are also recorded in the region 200–400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Structure Elsevier

Spectroscopic investigation on structure (monomer and dimer), molecular characteristics and comparative study on vibrational analysis of picolinic and isonicotinic acids using experimental and theoretical (DFT & IVP) methods

Loading next page...
 
/lp/elsevier/spectroscopic-investigation-on-structure-monomer-and-dimer-molecular-BWFZ14TM60
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2860
eISSN
1872-8014
D.O.I.
10.1016/j.molstruc.2018.01.083
Publisher site
See Article on Publisher Site

Abstract

In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of OH⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6–311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular OH⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular OH⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm−1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm−1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV–visible (UV–Vis) spectra of the compounds are also recorded in the region 200–400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules.

Journal

Journal of Molecular StructureElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off