Spectral components of detergent-solubilized bovine cytochrome oxidase

Spectral components of detergent-solubilized bovine cytochrome oxidase Cytochrome oxidase is the terminal oxidase of the mitochondrial electron transport chain and pumps 4 protons per oxygen reduced to water. Spectral shifts in the α-band of heme a have been observed in multiple studies and these shifts have the potential to shed light on the proton pumping intermediates. Previously we found that heme a had two spectral components in the α-band during redox titrations in living RAW 264.7 mouse macrophage cells, the classical 605 nm form and a blue-shifted 602 nm form. To confirm these spectral changes were not an artifact due to the complex milieu of the living cell, redox titrations were performed in the isolated detergent-solubilized bovine enzyme from both the Soret- and α-band using precise multiwavelength spectroscopy. This data verified the presence of the 602 nm form in the α-band, revealed a similar shift of heme a in the Soret-band and ruled out the reversal of calcium binding as the origin of the blue shift. The 602 nm form was found to be stabilized at high pH or by binding of azide, which is known to blue shift the α-band of heme a. Azide also stabilized the 602 nm form in the living cells. It is concluded there is a form of cytochrome oxidase in which heme a undergoes a blue shift to a 602 nm form and that redox titrations can be successfully performed in living cells where the oxidase operates in its authentic environment and in the presence of a proton motive force. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Bioenergetics Elsevier

Spectral components of detergent-solubilized bovine cytochrome oxidase

Loading next page...
 
/lp/elsevier/spectral-components-of-detergent-solubilized-bovine-cytochrome-oxidase-OZW0Pq0qo0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0005-2728
D.O.I.
10.1016/j.bbabio.2018.04.009
Publisher site
See Article on Publisher Site

Abstract

Cytochrome oxidase is the terminal oxidase of the mitochondrial electron transport chain and pumps 4 protons per oxygen reduced to water. Spectral shifts in the α-band of heme a have been observed in multiple studies and these shifts have the potential to shed light on the proton pumping intermediates. Previously we found that heme a had two spectral components in the α-band during redox titrations in living RAW 264.7 mouse macrophage cells, the classical 605 nm form and a blue-shifted 602 nm form. To confirm these spectral changes were not an artifact due to the complex milieu of the living cell, redox titrations were performed in the isolated detergent-solubilized bovine enzyme from both the Soret- and α-band using precise multiwavelength spectroscopy. This data verified the presence of the 602 nm form in the α-band, revealed a similar shift of heme a in the Soret-band and ruled out the reversal of calcium binding as the origin of the blue shift. The 602 nm form was found to be stabilized at high pH or by binding of azide, which is known to blue shift the α-band of heme a. Azide also stabilized the 602 nm form in the living cells. It is concluded there is a form of cytochrome oxidase in which heme a undergoes a blue shift to a 602 nm form and that redox titrations can be successfully performed in living cells where the oxidase operates in its authentic environment and in the presence of a proton motive force.

Journal

Biochimica et Biophysica Acta (BBA) - BioenergeticsElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off