Species distribution models and ecological theory: A critical assessment and some possible new approaches

Species distribution models and ecological theory: A critical assessment and some possible new... Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling. A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification. Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables. Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory. Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used. Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Species distribution models and ecological theory: A critical assessment and some possible new approaches

Ecological Modelling, Volume 200 (1) – Jan 10, 2007

Loading next page...
 
/lp/elsevier/species-distribution-models-and-ecological-theory-a-critical-I4pZRj02om
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier Ltd
ISSN
0304-3800
eISSN
1872-7026
DOI
10.1016/j.ecolmodel.2006.07.005
Publisher site
See Article on Publisher Site

Abstract

Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling. A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification. Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables. Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory. Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used. Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology.

Journal

Ecological ModellingElsevier

Published: Jan 10, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off