Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment

Spatiotemporal prediction of daily ambient ozone levels across China using random forest for... In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O3]MDA8) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O3]MDA8 by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R2 = 0.69 and RMSE = 26 μg/m3). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O3]MDA8 is predicted to be 84 ± 23 μg/m3 annually, with the highest seasonal mean in the summer (103 ± 8 μg/m3). The summer [O3]MDA8 is predicted to be the highest in North China (125 ± 17 μg/m3). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O3]MDA8>100 μg/m3), and 12% of the population are exposed to [O3]MDA8>160 μg/m3 (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O3 pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O3]MDA8 of 140 ± 29 μg/m3 in summer. To the best of the authors’ knowledge, this study is the first statistical modeling work of ambient O3 for China at the national level. This timely and extensively validated [O3]MDA8 dataset is valuable for refining epidemiological analyses on O3 pollution in China. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment

Loading next page...
 
/lp/elsevier/spatiotemporal-prediction-of-daily-ambient-ozone-levels-across-china-RcD02g83SB
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.10.029
Publisher site
See Article on Publisher Site

Abstract

In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O3]MDA8) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O3]MDA8 by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R2 = 0.69 and RMSE = 26 μg/m3). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O3]MDA8 is predicted to be 84 ± 23 μg/m3 annually, with the highest seasonal mean in the summer (103 ± 8 μg/m3). The summer [O3]MDA8 is predicted to be the highest in North China (125 ± 17 μg/m3). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O3]MDA8>100 μg/m3), and 12% of the population are exposed to [O3]MDA8>160 μg/m3 (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O3 pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O3]MDA8 of 140 ± 29 μg/m3 in summer. To the best of the authors’ knowledge, this study is the first statistical modeling work of ambient O3 for China at the national level. This timely and extensively validated [O3]MDA8 dataset is valuable for refining epidemiological analyses on O3 pollution in China.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off