Neglect of ecological knowledge is a limiting factor in the use of statistical modelling to predict species distribution. Three components are needed for statistical modelling, an ecological model concerning the ecological theory to be used or tested, a data model concerning the collection and measurement of the data, and a statistical model concerning the statistical theory and methods used. This component framework is reviewed with emphasis on ecological theory. The expected shape of a species response curve to an environmental gradient is a central assumption on which agreement has yet to be reached. The nature of the environmental predictors whether indirect variables, e.g. latitude that have no physiological impact on plants, or direct variables, e.g. temperature also influence the type of response expected. Straight-line relationships between organisms and environment are often used uncritically. Many users of canonical correlation analysis use linear (straight-line) functions to relate ordination axes to variables such as slope and aspect though this is not a necessary part of the method. Some statisticians have used straight lines for species/environment relationships without testing, when evaluating new statistical procedures. Assumptions used in one component often conflict with those in another component. Statistical models can be used to explore ecological theory. Skewed species response curves predominate contrary to the symmetric unimodal curves assumed by some statistical methods. Improvements in statistical modelling can be achieved based on ecological concepts. Examples include incorporating interspecific competition from dominant species; more proximal predictors based on water balance models and spatial autocorrelation procedures to accommodate non-equilibrium vegetation.
Ecological Modelling – Elsevier
Published: Nov 30, 2002
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue