Spatial-frequency characteristics of letter identification in central and peripheral vision

Spatial-frequency characteristics of letter identification in central and peripheral vision Spatial-frequency characteristics of letter identification are much better understood in the fovea than in the periphery. The purpose of this study was to compare the spatial-frequency characteristics of letter identification in central and peripheral vision. We measured contrast thresholds for identifying single, Times-Roman lower-case letters that were spatially band-pass filtered. Each of the 26 letters was digitally filtered with a set of nine cosine log filters, with peak object spatial frequencies ranging from 0.63 to 10 c/letter, in half-octave steps. Bandwidth of the filters was 1 octave. Three observers with normal vision were each tested monocularly at the fovea, and at 5° and 10° in the inferior visual field. Letter sizes were 0.2, 0.4 and 0.6 log units larger than high contrast, unfiltered acuity letters. Plots of contrast sensitivity for letter identification vs. frequency of the band-pass filters exhibit spatial tuning. In general, the spatial-frequency characteristics of letter identification are fundamentally identical between central and peripheral vision. These characteristics include the scaling of the peak frequency of the spatial-tuning functions with letter size and the bandwidth of the tuning functions. The only difference between the fovea and the periphery is that for the same physical letter size, peak sensitivity of the spatial-tuning functions occurs at a higher retinal frequency at the fovea than in the periphery. To test whether or not the contrast sensitivity function (CSF) can account for the differences in the spatial-frequency characteristics of letter identification between central and peripheral vision, we incorporated a human CSF into an ideal-observer model, and tested the performance of this ideal-observer on the same letter identification task used with the human observers. Data from this CSF-ideal-observer resemble closely those of human observers, suggesting that the spatial-frequency characteristics of human letter identification can be accounted for by the CSF and the letter-identity information, without invoking selection among narrow-band spatial-frequency channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Vision Research Elsevier

Spatial-frequency characteristics of letter identification in central and peripheral vision

Loading next page...
 
/lp/elsevier/spatial-frequency-characteristics-of-letter-identification-in-central-XJlOb74SlK
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science Ltd
ISSN
0042-6989
eISSN
1878-5646
DOI
10.1016/S0042-6989(02)00092-5
Publisher site
See Article on Publisher Site

Abstract

Spatial-frequency characteristics of letter identification are much better understood in the fovea than in the periphery. The purpose of this study was to compare the spatial-frequency characteristics of letter identification in central and peripheral vision. We measured contrast thresholds for identifying single, Times-Roman lower-case letters that were spatially band-pass filtered. Each of the 26 letters was digitally filtered with a set of nine cosine log filters, with peak object spatial frequencies ranging from 0.63 to 10 c/letter, in half-octave steps. Bandwidth of the filters was 1 octave. Three observers with normal vision were each tested monocularly at the fovea, and at 5° and 10° in the inferior visual field. Letter sizes were 0.2, 0.4 and 0.6 log units larger than high contrast, unfiltered acuity letters. Plots of contrast sensitivity for letter identification vs. frequency of the band-pass filters exhibit spatial tuning. In general, the spatial-frequency characteristics of letter identification are fundamentally identical between central and peripheral vision. These characteristics include the scaling of the peak frequency of the spatial-tuning functions with letter size and the bandwidth of the tuning functions. The only difference between the fovea and the periphery is that for the same physical letter size, peak sensitivity of the spatial-tuning functions occurs at a higher retinal frequency at the fovea than in the periphery. To test whether or not the contrast sensitivity function (CSF) can account for the differences in the spatial-frequency characteristics of letter identification between central and peripheral vision, we incorporated a human CSF into an ideal-observer model, and tested the performance of this ideal-observer on the same letter identification task used with the human observers. Data from this CSF-ideal-observer resemble closely those of human observers, suggesting that the spatial-frequency characteristics of human letter identification can be accounted for by the CSF and the letter-identity information, without invoking selection among narrow-band spatial-frequency channels.

Journal

Vision ResearchElsevier

Published: Aug 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off