Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by... This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

Loading next page...
 
/lp/elsevier/solution-processed-flexible-planar-perovskite-solar-cells-a-strategy-H6GYZOesuW
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.026
Publisher site
See Article on Publisher Site

Abstract

This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off