Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by... This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

Loading next page...
 
/lp/elsevier/solution-processed-flexible-planar-perovskite-solar-cells-a-strategy-H6GYZOesuW
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.026
Publisher site
See Article on Publisher Site

Abstract

This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off