Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia

Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia We examined the extent of soil disturbance associated with bulldozer yarding and the regrowth of woody vegetation on bulldozer paths (skid trails) in selectively logged dipterocarp forest. In an area logged in 1993, using conventional, i.e., uncontrolled, harvesting methods, about 17% of the area was covered by roads and skid trails. In contrast, in a 450-ha experimental area where reduced-impact logging guidelines were implemented, 6% of the area was similarly disturbed. Skid trails in the reduced-impact logging areas were less severely disturbed than those in conventional logging areas; the proportion of skid trails with subsoil disturbance was less than half that in conventional logging areas. Four years after logging, woody plant recovery on skid trails was greater in areas logged by reduced-impact than by conventional methods. Skid trails where topsoil had been bladed off had less woody vegetation than skid trails with intact topsoil. In a chronosequence of logging areas (3, 6, and 18 years after logging), species richness and stem densities of woody plants (>1 m tall, <5 cm dbh) were lower on skid trail tracks than on skid trail edges or in adjacent forest. Both richness and density increased with time since logging, but even 18 years after logging, abandoned skid trails were impoverished in small woody stems compared with adjacent forest. Minimizing soil and stand disturbance during logging appears to allow a more rapid recovery of vegetation on bulldozed soils, but the long-term fate of trees growing on compacted soils remains uncertain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Forest Ecology and Management Elsevier

Soil disturbance and post-logging forest recovery on bulldozer paths in Sabah, Malaysia

Forest Ecology and Management, Volume 130 (1) – May 1, 2000

Loading next page...
 
/lp/elsevier/soil-disturbance-and-post-logging-forest-recovery-on-bulldozer-paths-iqcBzdQc1B
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science B.V.
ISSN
0378-1127
eISSN
1872-7042
DOI
10.1016/S0378-1127(99)00192-9
Publisher site
See Article on Publisher Site

Abstract

We examined the extent of soil disturbance associated with bulldozer yarding and the regrowth of woody vegetation on bulldozer paths (skid trails) in selectively logged dipterocarp forest. In an area logged in 1993, using conventional, i.e., uncontrolled, harvesting methods, about 17% of the area was covered by roads and skid trails. In contrast, in a 450-ha experimental area where reduced-impact logging guidelines were implemented, 6% of the area was similarly disturbed. Skid trails in the reduced-impact logging areas were less severely disturbed than those in conventional logging areas; the proportion of skid trails with subsoil disturbance was less than half that in conventional logging areas. Four years after logging, woody plant recovery on skid trails was greater in areas logged by reduced-impact than by conventional methods. Skid trails where topsoil had been bladed off had less woody vegetation than skid trails with intact topsoil. In a chronosequence of logging areas (3, 6, and 18 years after logging), species richness and stem densities of woody plants (>1 m tall, <5 cm dbh) were lower on skid trail tracks than on skid trail edges or in adjacent forest. Both richness and density increased with time since logging, but even 18 years after logging, abandoned skid trails were impoverished in small woody stems compared with adjacent forest. Minimizing soil and stand disturbance during logging appears to allow a more rapid recovery of vegetation on bulldozed soils, but the long-term fate of trees growing on compacted soils remains uncertain.

Journal

Forest Ecology and ManagementElsevier

Published: May 1, 2000

References

  • Costs and benefits of forest management for timber production in eastern Amazonia
    Barreto, P.; Amaral, P.; Vidal, E.; Uhl, C.
  • Logging damage during planned and unplanned logging operations in the eastern Amazon
    Johns, J.S.; Barreto, P.; Uhl, C.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off