Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing

Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing Understanding sources of variability in net primary productivity is critical for projecting ecosystem responses to global change, as well as for improving management in agricultural systems. However, the processes controlling productivity cannot be fully addressed with field- or global-scale observations. In this study, we performed a regional observational experiment using remote sensing to analyze sources of yield variability in an irrigated wheat system in Northwest Mexico. Four different soil types and 3 years with contrasting weather served as the two main experimental factors, while remotely sensed yields provided thousands of observations within each treatment. Analysis of variance revealed that 6.6 and 4.6% of the variability in yields could be explained by soil type and climate, respectively, with a negligible fraction explained by soil-type–climate interactions. The majority of the variability in yields (88.6%) was observed within treatments and was attributed mainly to variations in management. The impacts of management were observed to depend significantly on both soil type and climate, as revealed by distributions of yields within each treatment. The results indicate that changes in management will have the greatest impact on regional production, and will also play a large role in determining the impact of any changes in climate or soil. This work also demonstrates the use of consistent remote sensing estimates to perform regional studies unfeasible with field-based approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural and Forest Meteorology Elsevier

Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing

Loading next page...
 
/lp/elsevier/soil-climate-and-management-impacts-on-regional-wheat-productivity-in-oh0EsRkJ8z
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0168-1923
D.O.I.
10.1016/S0168-1923(02)00138-7
Publisher site
See Article on Publisher Site

Abstract

Understanding sources of variability in net primary productivity is critical for projecting ecosystem responses to global change, as well as for improving management in agricultural systems. However, the processes controlling productivity cannot be fully addressed with field- or global-scale observations. In this study, we performed a regional observational experiment using remote sensing to analyze sources of yield variability in an irrigated wheat system in Northwest Mexico. Four different soil types and 3 years with contrasting weather served as the two main experimental factors, while remotely sensed yields provided thousands of observations within each treatment. Analysis of variance revealed that 6.6 and 4.6% of the variability in yields could be explained by soil type and climate, respectively, with a negligible fraction explained by soil-type–climate interactions. The majority of the variability in yields (88.6%) was observed within treatments and was attributed mainly to variations in management. The impacts of management were observed to depend significantly on both soil type and climate, as revealed by distributions of yields within each treatment. The results indicate that changes in management will have the greatest impact on regional production, and will also play a large role in determining the impact of any changes in climate or soil. This work also demonstrates the use of consistent remote sensing estimates to perform regional studies unfeasible with field-based approaches.

Journal

Agricultural and Forest MeteorologyElsevier

Published: Dec 30, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off