Smoothness and plateauness contributions to the running-in friction and wear of stratified helical slide and plateau honed cylinder liners

Smoothness and plateauness contributions to the running-in friction and wear of stratified... Cylinder liner surface has a great influence on frictional and wear performances of combustion engines during the running-in period. Two surface texture anisotropies produced by plateau honing (PH) and helical slide honing (HSH) processes (which consist of 50° and 130° cross-hatched grooves, respectively) are commonly used in automotive industry for thermal combustion engine cylinder liners. They are generated by a three stages process. The first stage, rough honing, removes enough material to obtain the desired cylindricity. The second step, finish honing, generates the honed texture which consists of grooves with a specific cross-hatch angle. The third stage permits to reduce the surface peaks and therefore allows varying plateau superficial roughness amplitude.This paper is devoted to studying the influence of respectively smoothness and plateauness on honed surface wear and friction performances during running-in. For that, HSH and PH textures are generated using different final honing stage durations in order to obtain different levels of surface peak clipping. Then, friction, wear and surface topography evolution were analyzed during running-in tests on a reciprocating ring-liner tribometer under mixed lubrication regime. The results show that the superficial surface roughness generated by helical slide honing has a very low contribution into friction. This is promising for the honing process optimization, in which the third stage can be significantly reduced or avoided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Smoothness and plateauness contributions to the running-in friction and wear of stratified helical slide and plateau honed cylinder liners

Loading next page...
 
/lp/elsevier/smoothness-and-plateauness-contributions-to-the-running-in-friction-7rg11ad0Ir
Publisher
Elsevier
Copyright
Copyright © 2014 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2014.11.011
Publisher site
See Article on Publisher Site

Abstract

Cylinder liner surface has a great influence on frictional and wear performances of combustion engines during the running-in period. Two surface texture anisotropies produced by plateau honing (PH) and helical slide honing (HSH) processes (which consist of 50° and 130° cross-hatched grooves, respectively) are commonly used in automotive industry for thermal combustion engine cylinder liners. They are generated by a three stages process. The first stage, rough honing, removes enough material to obtain the desired cylindricity. The second step, finish honing, generates the honed texture which consists of grooves with a specific cross-hatch angle. The third stage permits to reduce the surface peaks and therefore allows varying plateau superficial roughness amplitude.This paper is devoted to studying the influence of respectively smoothness and plateauness on honed surface wear and friction performances during running-in. For that, HSH and PH textures are generated using different final honing stage durations in order to obtain different levels of surface peak clipping. Then, friction, wear and surface topography evolution were analyzed during running-in tests on a reciprocating ring-liner tribometer under mixed lubrication regime. The results show that the superficial surface roughness generated by helical slide honing has a very low contribution into friction. This is promising for the honing process optimization, in which the third stage can be significantly reduced or avoided.

Journal

WearElsevier

Published: May 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off