Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty

Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly... Since the early 2000s, the use of large femoral heads is becoming increasingly popular in total hip arthroplasty (THA), which provides an improved range of motion and joint stability. Large femoral heads commonly necessitate to be coupled with thinner acetabular liners than the conventionally used because of the limited sizes of outer shells (especially for patients with small pelvic size). However, the influence of the liner thinning on the mechanical performance is still not clearly understood. The objective of this study was to experimentally clarify the size and thickness effect on the rates of compressive creep strain in conventional (virgin low-crosslinked) and vitamin E-diffused highly crosslinked, ultra-high molecular weight polyethylene (UHMWPE) acetabular liners. We applied uniaxial compression to these liners of various internal diameters (28, 32 and 36mm) and thicknesses (4.8, 6.8 and 8.9mm) up to 4320min under the constant load of 3000N. Vitamin E-diffused highly crosslinked UHMWPE components showed significantly greater creep resistance than the conventional ones. In the both types of UHMWPE, the rates of creep strain significantly decreased by increasing the internal diameter and thickness. Varying the component thickness contributed more largely to the creep behavior rather than the internal diameter. Our results suggest the positive mechanical advantage of using large femoral heads, but at the same time, a considerable liner thinning is not recommended for minimizing creep strain. Therefore, the further in-vitro as well as in-vivo research are necessary to conclude the optimal balance of head diameter and liner thickness within the limited sizes of outer shells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanical Behavior of Biomedical Materials Elsevier

Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty

Loading next page...
 
/lp/elsevier/size-and-thickness-effect-on-creep-behavior-in-conventional-and-hIHyEmdeRu
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1751-6161
eISSN
1878-0180
D.O.I.
10.1016/j.jmbbm.2016.05.020
Publisher site
See Article on Publisher Site

Abstract

Since the early 2000s, the use of large femoral heads is becoming increasingly popular in total hip arthroplasty (THA), which provides an improved range of motion and joint stability. Large femoral heads commonly necessitate to be coupled with thinner acetabular liners than the conventionally used because of the limited sizes of outer shells (especially for patients with small pelvic size). However, the influence of the liner thinning on the mechanical performance is still not clearly understood. The objective of this study was to experimentally clarify the size and thickness effect on the rates of compressive creep strain in conventional (virgin low-crosslinked) and vitamin E-diffused highly crosslinked, ultra-high molecular weight polyethylene (UHMWPE) acetabular liners. We applied uniaxial compression to these liners of various internal diameters (28, 32 and 36mm) and thicknesses (4.8, 6.8 and 8.9mm) up to 4320min under the constant load of 3000N. Vitamin E-diffused highly crosslinked UHMWPE components showed significantly greater creep resistance than the conventional ones. In the both types of UHMWPE, the rates of creep strain significantly decreased by increasing the internal diameter and thickness. Varying the component thickness contributed more largely to the creep behavior rather than the internal diameter. Our results suggest the positive mechanical advantage of using large femoral heads, but at the same time, a considerable liner thinning is not recommended for minimizing creep strain. Therefore, the further in-vitro as well as in-vivo research are necessary to conclude the optimal balance of head diameter and liner thickness within the limited sizes of outer shells.

Journal

Journal of the Mechanical Behavior of Biomedical MaterialsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off